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• CASE STUDY 3 : Capability Analysis: short term metrics (Cp and Cpk) and

long term metrics (Pp and Ppk)

• CASE STUDIES 4/5: Probabilistic methods for a quick evaluation of the manufacturing process 

(Standardized Normal distribution, Poisson and Binomial distributions)

 CASE STUDY 6:  Processes non-normally distributed: impurities content, microbial counts, 

Particle Size Distributions (PSD), black particles (or black specs)

 Normalization of non-normal data using mathematical transformations 

(logarithm, square root, reverse or reciprocal)

 Johnson Transformations
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INDEX (cont.)

 CASE STUDY 7: Multivariate methods : a different way to look at Quality Control data !

 CONCLUSIONS: Quality Metrics are ease of use quantitative indicators that allow to 

intercept the variability of products / processes, quantify it and 

therefore ensure Quality.

Quality Metrics provide therefore a “quantitative knowledge” of the 

process that:

 allows to manage anomalous events (OOT, OOS, deviations, etc.) 

 communicate awareness in what is done and reliability in the processes 

used.

All this is summed up in two words: ECONOMIC ADVANTAGE!
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CASE STUDY 3

 Capability Analysis: metrics for stable /mature processes (Cp and Cpk) and

metrics for new processes (Pp and Ppk)
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CASE STUDY 3 – Capability Analysis  

Let come back to the example seen 

in CASE STUDY 1. 

For the sake of clarity, in this and the 

following two slides are summarized 

the key points.

Here is the conventional plot 

reporting « average ± 3σ » for the

HPLC assay values of the 102 lots of 

an API manufactured in 2017.

5



CASE STUDY 3 – Capability Analysis  

Here, on the right, is the histogram 

that shows data distribution by 

representing for each assay value its 

frequency.

Using histograms is very easy to 

graphically identify the central 

tendency of the data as well as the 

shape of the distribution.
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CASE STUDY 3 – Capability Analysis  

Here, on the side, is the I-MR Chart with a 

mR = 2.

This chart provides information on the:

 variation inherent to the process known 

as process spread or voice of the process

and

 variation allowed by the Customer

known as process specifications or voice 

of the Customer.

Note: I-MR cards are generally used when it is difficult or impossible to measure in subgroups. This occurs when measurements 

are expensive or destructive, low production volumes of products or products have a very long or continuous cycle time.
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CASE STUDY 3 – Capability Analysis  

As long as the process spread 

(measured by the standard deviation, 

σ) lies within the process 

specifications, the process is said 

capable of delivering the quality 

required by the Customer.

The narrower is the process spread, 

the more capable is the process !
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CASE STUDY 3 – Capability Analysis  

Consequently, when the process 

spread is wider than the process 

specifications, the process is said 

incapable of delivering the quality 

required by the Customer.
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CASE STUDY 3 – Capability Analysis  

Quality is usually measured using the following indicators:

 defective units per million (ppm)

 defects per unit (dpu)

 defects per million opportunities (DPMO)

 defect yield

BUT

defect yield is an indicator not informative in view of a process improvement as it cannot answer questions like:

 Is defectiveness a problem caused by the positioning of the mean or by excessive variability?

 To improve, should we then move the average or reduce process variability?

there is a need of more efficient indicators !
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CASE STUDY 3 – Capability Analysis  

Capability Indices

 Cp or potential capability is defined as 𝐶𝑝 =
𝑈𝑆𝐿 −𝐿𝑆𝐿

6𝜎
and it measures the ratio between the

admissible dispersion for the process (difference between the tolerance limits) and the natural tolerance 

(6σ). 6σ is used because in a normal distribution, such as the one under consideration, 99.73% of the 

observations is comprised of 6 times the standard deviation. 

Because of this, Cp can be calculated only if the process is stable and distributed normally. 

Cp is a good process indicator, but alone it is not enough because it only controls the process dispersion, 

but not its centering. 

Cp indicates how capable a process is but only if it is centered !
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CASE STUDY 3 – Capability Analysis  

Capability Indices

 if Cp = 1  0.27% of the observations do not conform to the specifications ( 3σ)

 if Cp = 1.33  0.0064% of the observations do not conform to the specifications ( 4σ)

 if Cp = 1.67  0.000057% of the observations do not conform to the specifications ( 5σ)

As general indication:

 if Cp  1.33 the process can be considered satisfactory

 if 1.00  Cp < 1.33 the process can be considered adequate

 if Cp < 1.00 the process is inadequate
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CASE STUDY 3 – Capability Analysis  

Capability Indices

 Cpk or real capability is defined as: min (USL - )/3σ ; ( - LSL)/3σ  or min CPU ; CPL

 Cpk also considers the position of the process with respect to the tolerance limits.

 if  Cpk > 1 : data are within tolerance limits

 if 0 < Cpk < 1 : part of the observations lie beyond the tolerance limits

 if Cpk < 0 : data, on the average, are out of specifications

 if Cpk = 1 : 99.73% of the observations are within the tolerance limits (i.e., only 3 

observations on 1000 are rejected)
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CASE STUDY 3 – Capability Analysis  

Capability Indices

In terms typical of the Quality Control:

 Cpk > 1 : the process works well

 Cpk = 1 : we are at the limit of the processing of non-conformed pieces

 0 < Cpk < 1 : non-compliant pieces are processed

 Cpk = 0 : half of the pieces are out of specification

 -1 < Cpk < 0 : more than 50% of the pieces are out of specification

 Cpk < -1 : nearly all pieces are out of specifications
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CASE STUDY 3 – Capability Analysis  

Capability Indices

 In the manufacturing industry many Companies require their suppliers Cpk values of 1.33 or even 2. 

Cpk = 1.33 means that the difference between the average value  and the tolerance limit is 4σ,

i.e., 99.994% of the product is within specification.

 An improvement from 1.33 to 2 is not always justified! It is a matter of a cost-benefit assessment.

 Cpk can never be greater than Cp, in the best case the two coincide.

Cpk = Cp if the average value corresponds with the average value of the specification. Cp can therefore 

indicate how much better Cpk would be if the process was such that the distribution center was close to 

the midpoint of the specification.
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CASE STUDY 3 

Capability Analysis  

Cp and Cpk: 

A Summary

Mature / Stable processes 

 
Cp 

(Process Spread) 
Cpk 

(Process Centering) 

C
p

 v
s.

 C
p

k 

Cp is an index that predicts either any 
mature process can meet the 
specifications or not. 
It is assumed that the process is 
already under statistical control (i.e., 
stable) 

Cpk is an index that predicts how close 
to the specification limits is the 
process mean of any mature process. 
It is assumed that the process is 
already under statistical control (i.e., 
stable) 

Cp is used to predict the capability 
with respect to process variation of 
a mature process, already under 
statistical control (i.e., stable)  

Cp is used to predict the capability 
with respect to process variation and 
centering of a mature process, 
already under statistical control (i.e., 
stable)  

Use Cp and Cpk only once the 
PROCESS IS ALREADY MATURE AND STABLE ENOUGH 

(i.e., in a state of STATISTICAL CONTROL) 

Cp = (USL – LSL) /6σ 

USL = Upper Specification Limit 
LSL = Lower Specification Limit 
 
σ =  Process Standard Deviation 

 =  R /  d 2  or  S  / C4 

 = Process Spread 
 = Voice of the Process 

Cpk = min (CPU, CPL) 

CPU = (USL - ) / 3σ 

CPL = ( - LSL) / 3σ 
 
σ = Process Standard Deviation 

 = Arithmetic mean 

Cp and Cpk apply to sub-grouped data referring to different shifts, 
machines, operators, etc. 
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CASE STUDY 3 

Capability Analysis  

Pp and Ppk: 

A Summary

New processes 

 
Pp 

(Process Spread) 
Ppk 

(Process Centering) 

P
p

 v
s.

 P
p

k 

Pp is an index that verifies either 
any new process can meet the 
specifications or not. 

The process might not be under 
statistical control  piloting 

Ppk is an index that verifies how 
close to the specification limits is 
the process mean of any new 
process. 
The process might not be under 
statistical control  piloting 

Pp is used to check the capability 
with respect to process variation 
of a new process  

Ppk is used to check the capability 
with respect to process variation 
and centering of a new process  

Use Pp and Ppk only once you are 
INITIALLY SETTING UP A NEW PROCESS 

Pp = (USL – LSL) /6σ 

USL = Upper Specification Limit 
LSL = Lower Specification Limit 
 
USL-LSL = Specification Spread 
  Voice of the Customer 
 
σ =  Sample Standard Deviation 
 

 = 
   𝑥𝑖−𝑋 2

 𝑛−1
 

Ppk = min (PPU, PPL) 

PPU = (USL - ) / 3σ 

PPL = ( - LSL) / 3σ 
 
 
 
 
σ = Sample Standard Deviation 

 = Arithmetic mean 

Pp and Ppk apply to the overall process and do not require any data 
grouping 
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CASE STUDY 3

Capability Analysis 

Cp and Pp
(Process Spread)

Cpk and Ppk
(Process Centering)

C
p

, P
p
vs
.

C
p

k ,
 P

p
k

Cp and Pp measure the constancy
around the average performance

Cpk and Ppk measure the constancy 
around the average performance and 

the closeness to target

Graphical 

Summary
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CASE STUDY 3 – Capability Analysis  

Let’s now consider our initial process.

As expected, Cp > Cpk (in fact 2.74 > 2.48), 

but it deals of excellent values anyway. The 

difference is due to the fact that the process 

is not well centered on target.

As PPM indicates the number of 

nonconforming parts in the process, 

expressed in parts per million, the Total PPM 

of Expected Overall Performance says us 

that 1 lot on 1 million will be out of specs... 

but this is acceptable ☺
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CASE STUDY 3 –
Capability Analysis  

Here is an I Chart displaying the 

assay values pertinent to an API 

manufacturing process collected in 

two subsequent years.

Let’s see how a Capability 

Analysis can be set up and what it 

reveals.
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CASE STUDY 3 – Capability Analysis  

The first step is to investigate how data is distributed: P-value >0.05  Normal distribution  
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CASE STUDY 3 – Capability Analysis  

The Probability plots here below that data is normally distributed in both cases. 
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CASE STUDY 3 – Capability Analysis  

Capability Analysis shows the overall process improvement resulting from spread reduction and centering.
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CASE STUDY 3 – CONCLUSION

 Capability Analysis allows to verify if a certain process, despite its variability, is able to respect the 

specified specification limits. 

 Once a process is under statistical control (remember there is no capability without stability !), the 

measure of quality (or metric) can be usefully expressed with the capability indices.

 The capability indices Cp and Cpk are dimensionless indices and therefore can be used to compare the 

capabilities of two processes with each other.

 The Cost of Poor Quality (COPQ) can be estimated from the ppm resulting from capability analysis.
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CASE STUDY 3 – CONCLUSION

Process Capability Analysis is:

 performed on existing machines to assign them to the activities for which they are most suitable

 performed on new machines on the market to select them based on a specific level of 

performance

 performed on new equipment as part of the qualification and approval process

 performed on existing processes to establish a baseline of current operations

 done periodically to monitor “wear and tear” on equipment and deterioration/drift of a process for 

whatever reason (material, personnel, environment, etc.)

M.L. George et al., The Lean Six Sigma Pocket Toolbook – McGraw-Hill (2005)
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CASE STUDY 3 – CONCLUSION

 Capability Indices are useful process metrics 

 Given their nature of "summary indices" they have similarities with the classic "summary indices" 

of descriptive statistics (position, variability, shape)

 In the next case studies we will instead see useful process metrics that are more "inferential in 

nature" than “descriptive”
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CASE STUDIES  4 / 5

 Probabilistic methods for a quick evaluation of the manufacturing process 

(Standardized Normal distribution, Poisson and Binomial distributions)
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CASE STUDY 4

During the production of a batch of 

tablets, 100 are sampled in-process, 

obtaining the weight trend shown 

here. 

This indicates that the tablets have an 

average weight of 101.7 ± 4,249 mg. 

Now, if the release test foresees that 

no more than 2 out of 20 tablets can 

exceed 10% of the average weight, 

can we already say in-process if the 

batch passes?
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CASE STUDY 4

Given that this example has general 

validity (in fact it could equally apply to 

the weight of vials taken from a filling 

line or to the volumes of pre-filled 

syringes, etc.), the first thing to do is to 

look at how the weights obtained in 

Production are distributed. 

As expected, the graph alongside shows 

that the data are normally distributed. 

We can then proceed as shown in the 

next slide.
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CASE STUDY 4

The initial question can be reworded as 

follows: 

What percentage of tablets weigh 

between 91.53 mg and 111.87 mg? If 

this percentage is equal to or greater than 

98%, the batch passes the test.

The percentage of tablets of interest can 

be estimated by calculating the area 

underlying the normal curve in the 

figure in the range between 91.53 and 

111.87 mg as follows:
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CASE STUDY 4

𝑍 =
𝑋− 𝜇

𝜎
=

111.87−101.7

4.249
= 2.39

Standard tables show that 2.39 corresponds to an area of 0.9916 and therefore the area greater than 

111.87 is: 1- 0.9916 = 0.0084: this area corresponds to the probability of finding a tablet that 

weighs 111.87 mg or more. 

Since the range considered is symmetric, the same probability also corresponds to the probability 

of finding a tablet that weighs 91.53 mg or less and therefore the total probability that a tablet 

weighs less than 91.53 mg or more than 111.87 is: 

0.0084 + 0.0084 = 0.0168 or 1.68%. 

From this it follows that 100 - 1.68 = 98.32% of the tablets will be included between ± 10% of the 

average weight.
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CASE STUDY 4

Formally, the initial condition is satisfied even if a little at the limit (98.32% vs. 98%) and therefore the 

batch should pass the « average weight ± 10% »  test also during the final analysis! 

However, there is an overall probability  of 1.68% that a tablet may exceed the weight limits and 

therefore a possibility, albeit small, that a random sample, for example of 30 tablets taken for the 

Content Uniformity test, may not pass it! If in fact the batch from which the 100 tablets were sampled 

was, for example 10000 units, 1.68% are still 168 tablets. 

This result is important to be aware that, given a certain process, more often than is believed, the 

totality of the pieces produced does not meet all the set limits !

Hitting in an OOS or an OOT is therefore not so strange ! ☺
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CASE STUDY 4

In any case, knowing the percentage of defectiveness of the tablets in a batch (e.g., 1%, to simplify the 

calculations), Probability Theory allows you to estimate quite easily what is the probability of finding 

for example 3 defective units out of 30 sampled. 

In fact, using the Poisson distribution (as an approximation of the binomial), that is:

𝑝 𝑥 =
 𝑛𝑝 𝑥

𝑥!
𝑒−𝑛𝑝 =

𝜆𝑥

𝑥!
𝑒−𝜆

it can be estimated that:

𝑝 3 =
 30 ×0.01 3

3!
𝑒− 30 ×0.01 = 0.0033 (= 0.33%)

There is therefore less than 1% probability that by randomly sampling 30 tablets, 3 of them are 

defective.
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CASE STUDY 4

A random (or aleatory or stochastic) variable is distributed according to the Poisson law if its 

probability mass function (or probability function) is:

=
 𝑛𝑝 𝑥

𝑥!
𝑒−𝑛𝑝 =

𝜆𝑥

𝑥!
𝑒−𝜆 𝑥 = 0,1,2, …

𝑝 𝑥

= 0 elsewhere 

« … if n independent trials, each of which results in a success with probability p , are 
performed, then, when n is large and p small enough to make np moderate, the number of 
successes occurring is approximately a Poisson random variable with parameter λ = np »

S.M. Ross, A first course in probability– 9th Edition, Pearson College (2012)
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CASE STUDY 4

Introduced by Siméon Denis Poisson in a book he wrote regarding the application of probability theory 

to lawsuits (1837), it has a tremendous range of applications in diverse areas even rather common such 

as:

 number of misprints on a page (or number of pages) in a book,

 number of people in a community living 100 years of age,

 number of wrong phone numbers dialed in a day,

 number of equipment failures in a given time period,

 number of insects in a specified volume of soil, etc.

S.M. Ross, A first course in probability– 9th Edition, Pearson College (2012)
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CASE STUDY 4

Using the above formula (obviously remaining within its validity field, that is: large size and small 

defectiveness), if the weights sampled in the process are a good estimate of the production batch, you can 

build a table of « estimated defects » such as the one shown below, again when taking a defect of 1% and a 

total sample of 30 tablets:

Number of defective tablets on

a total of 30 sampled
Poisson Binomial

0 0.7408 0.7397

1 0.2222 0.2242

2 0.0333 0.0328

3 0.0033 0.0031

… … …

To demonstrate that the approximation 

provided in cases of this type by Poisson 

distribution is acceptable, it has been added 

the results that would have been obtained 

using the Binomial distribution. As expected, 

the agreement between the two data sets is 

good.
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CASE STUDY 4 - CONCLUSION

Since the considerations made regarding the tablets can be extended to other situations (e.g., filling 

weights of vials containing sterile powders, « black specs » in tablets or dosed powders, etc.), it has 

been seen as the application of simple quantitative methods (or quality metrics) allow us to extract 

useful information from simple in-process weighing operations and therefore already have an idea 

of the fate of the lot before it is submitted to the release analysis.
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CASE STUDY 5

During the production of a batch 

of tablets, 20 in-process samples 

are randomly sampled and the 

weights of which are shown in 

the table here on the side.

Tablets weights (mg)

47.9842 50.4625 48.9013 53.4198 47.0006

51.8503 50.9037 53.7210 46.0764 53.1639

48.5344 53.1428 51.1559 49.4118 52,6852

49.6923 57.3226 49.9143 51.2395 48.1680

It is known that the process, in conditions of normal operation, produces tablets whose average weight is 

50.36 mg and standard deviation 2.235 mg. 

We want to test the hypothesis that the process is under control, namely that: 

H0: µ = 50.36 mg vs. H1: µ ≠ 50.36 mg at a significance level of 5% (α = 0.05)
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CASE STUDY 5 - STATISTICAL HYPOTHESIS TESTING 

The statement H0: µ = 50.36 mg is the NULL HYPOTHESIS and H1: µ ≠ 50.36 is the ALTERNATIVE

HYPOTHESIS.

In this case, being the sample size n = 20 (i.e., small sample as  n < 30) we can assume a t-

distribution for the weights of tablets.

The t-distribution is bell-shaped like the Gaussian, but its exact shape depends on the « degrees 

of freedom» that in this case are 19 (i.e.,  dof = n -1).

D.C. Montgomery, Statistical Quality Control: A Modern Introduction – J. Wiley (2013)
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CASE STUDY 5

The sample mean is:  ҧ𝑥 = 50.7375 mg and its standard deviation is: σ = 2.6982

From tables it follows that : tα/2 at 19dof = 2.093 and therefore  -tα/2 at 19dof = -2.093

At this point the «test statistic» can be calculated : 𝑡 ҧ𝑥 =
ҧ𝑥 − μ

Τσ 𝑛
=

50.7375 −50.36

Τ2.6982 20
= −0.6257

Since the value assumed by the test statistic does not fall within the so-called «reject zone»:

𝑡 ҧ𝑥 = −0.6257 < 𝑡0.025 = 2.093 e  𝑡 ҧ𝑥 = − 0.6257 > −𝑡0.025 = −2.093

there is no experimental evidence to reject the null hypothesis and therefore conclude that the 

process is « out of control».
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CASE STUDY 5

As it can be seen from the graph 

here, H0 would be rejected for 

values of the «test statistic» lying 

in the reject zone.
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CASE STUDY 5-bis

Close to the example just seen, it could also be the following case study:

The tablets obtained from a given process are rejected if they weigh less than 95 mg or more than 108 

mg. 100 tablets are checked and there are: 3 tablets < 95 mg and 5 tablets > 108 mg. 

With this information alone we can estimate the average and standard deviation of the production 

process that generated it! 

Being the sample size greater than 30 we can assume a Gaussian distribution for the weight of the 

tablets and therefore….
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CASE STUDY 5-bis

P (w < 95 mg) = Φ
95 − μ

σ
Φ

95 − μ

σ
= 0.03

P (w > 108 mg) = 1 − Φ
108 − μ

σ
1 − Φ

108 − μ

σ
= 0.02

from which it follows that:

95 - μ = σ Z0.03 95 - μ = σ (-1.88) µ = 101.22 mg

108 - µ = σ Z0.98 108 - µ = σ (2.05) σ = 3.31 mg
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CASE STUDY 5 - CONCLUSION

These two examples were intended to show how: 

▪ taking random samples from a production line 

or 

▪ analyzing « processing waste »  

and using a pocket calculator and standard tables available everywhere it is possible to 

easily determine quality metrics capable of giving crucial information on the « state 

of the process ».



CASE STUDY 6

 Processes non-normally distributed: impurities content, microbial counts, 

Particle Size Distributions (PSD), black particles (or black specs)

 Normalization of non-normal data using mathematical transformations 

(logarithm, square root, reverse or reciprocal)

 Johnson Transformations
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CASE STUDY 6

“… One of the major sources of frustration 

in the application of statistical process 

control (SPC) methods to a chemical 

process is the prevalence of variables 

whose values have distributions that are, by 

nature, distinctly non-normal. Typically, 

methods used to analyze these variables are 

based on the normal distribution and, as 

such, are unrealistic…”

D.C. Jacobs, Watch out for Non normal Distributions - Chemical Engineering Process (Nov. 1990)

W.A. Levinson, Statistical Process Control for Real-World Applications – CRC Press (2011)
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CASE STUDY 6

In fact, practical experience shows that many of the variables encountered in typical industrial processes 

cannot be adequately described through normal distribution. The reasons for this are numerous, for example:

▪ Confinement of a given variable within predetermined limits (e.g., the temperature of a process that 

must not exceed a predetermined limit) 

▪ Measurement of a characteristic that has its natural limit in zero (e.g., the moisture content or the 

impurities content)

▪ Mathematical relations between the variables (e.g., the speed of a reaction that depends exponentially on 

temperature or microbial counts that follow non-normal distributions).

D.C. Jacobs, Watch out for Nonnormal Distributions - Chemical Engineering Process (Nov. 1990)
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CASE STUDY 6

It is important to keep all this in mind because if it is true that assuming the normal distribution 

simplifies calculations, its use where it does not apply can lead to serious inconveniences! 

In this regard, it is sufficient to think of the plot limits which are very often defined, as seen above, 

as « average ± 3σ ». In the case studies previously discussed, this was acceptable since the variables 

under study [i.e., HPLC assays (CASE STUDY 1) and weights (CASE STUDY 2)] were distributed 

exactly as normal. 

However, if the variable under study does not follow the normal distribution, the use of limits 

calculated precisely as «  average ± 3σ » could highlight that they are « out of specifications data »

(or OOS) which in fact are not! 
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CASE STUDY 6

For example, the figure here on 

the side shows a bar chart 

relating to the content of alkali 

metals in traces in traces in an 

aluminum alloy. Data refer to 

over 200 samples.

W.A. Levinson, Watch out for Non normal Distributions of Impurities – Chem. Eng. Proc. (May 1997)
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CASE STUDY 6

The average is approximately 

0.3 ppm and the standard 

deviation 0.33 ppm. 

The superimposed red curve is a 

normal of average µ = 0.3 ppm 

about and standard deviation 

σ = 2 ppm.

What looks « anomalous » in 

this graph? 
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CASE STUDY 6

What appears « anomalous » in the previous graph? 

 The curve does not adapt well to the histogram 

 The curve extends even beyond zero on the negative semi-axis! 

This suggests the possibility of having even less than zero in terms of residual impurity content in the 

aluminum alloy under analysis! 

NORMAL DISTRIBUTION IS THEREFORE

NOT A REALISTIC MODEL FOR THIS DATA!
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CASE STUDY 6

A similar situation occurs, 

for instance, when trying to 

interpolate a typical 

microbial distribution such 

as the one shown in the table 

on the side, with a Normal 

curve.

T. Sandle, Data Review and Analysis for Pharmaceutical Microbiology – Microbiology Solutions, 1st Ed., (Jan. 2014)

Week No. Mean count per week

1 0.00
2 5.15
3 0.29
4 6.93
5 1.86
6 1.47
7 0.10
8 0.00
9 2.22

10 3.95
11 0.11
12 1.25
13 0.00
14 6.34
15 0.31
16 0.45
17 2.70
18 0.89
19 0.65
20 3.45
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CASE STUDY 6

Since even « microbial 

count » data are not 

normally distributed (it 

deals, in fact of a 

characteristic that has its 

natural limit in zero), once 

again there is an 

unrealistic result !

T. Sandle, Data Review and Analysis for Pharmaceutical Microbiology – Microbiology Solutions, 1st Ed., (Jan. 2014)
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CASE STUDY 6

In fact, these data are 

distributed much more 

correctly according to a so-

called « lognormal » 

distribution, i.e., a 

distribution in which the 

logarithm of the averages of 

the microbial counts follows 

the Normal*.

*Data are said to follow the Lognormal distribution when the logarithms of the measurements follow the Normal distribution.
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CASE STUDY 6

The same also occurs when 

trying to interpolate a typical 

particle distribution curve with a 

Normal. 

Since even particle size 

distribution (PSD) has its natural 

limit in zero, data interpolation 

using a Normal curve leads to an 

unrealistic result !
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CASE STUDY 6

Using a lognormal instead, 

everything takes on meaning! 

The advantage of this is, for 

example, being able to estimate 

in probabilistic terms the 

percentage of particles lower 

than a given threshold or 

included in a range of 

diameters. A practical example 

of this is shown in the  next 

slide.
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CASE STUDY 6

In the graph alongside, the red 

colored area corresponds to the 

probability that a particle has a 

diameter of less than 10 µm which, 

as seen, is 87.2%. 

This information can be useful  for 

a deepening of the data for purposes 

such as: 

 process validation 

 historical analysis 

 handling of a complaint / OOS

 etc.
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CASE STUDY 6

Non-normal distributions are helpful in many situations, an example? 

« Black Specks » (or black particles) in tablets (or vials or APIs) 

In general this is an occasional phenomenon that occurs randomly and with low frequency. 

So one wonders: is this defect random or not?  The answer can be given by the

POISSON DISTRIBUTION or « of rare events »
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CASE STUDY 6

Let’s consider, for instance, the case of black particles found by inspecting samples of 80 different 

and hypothetical batches of tablets (please, note that what said below also applies to black particles 

found in vials or in samples of APIs !)

Lot No. Lot No. Lot No. Lot No. Lot No. Lot No. Lot No. Lot No.

1 0 11 2 21 0 31 1 41 1 51 1 61 0 71 0

2 1 12 2 22 0 32 1 42 0 52 2 62 3 72 0

3 1 13 2 23 0 33 2 43 0 53 4 63 4 73 0

4 0 14 0 24 0 34 1 44 1 54 1 64 1 74 1

5 0 15 2 25 0 35 1 45 0 55 1 65 1 75 2

6 0 16 3 26 0 36 0 46 0 56 1 66 0 76 3

7 0 17 0 27 0 37 0 47 2 57 0 67 0 77 0

8 0 18 0 28 2 38 0 48 0 58 0 68 0 78 1

9 1 19 0 29 1 39 2 49 2 59 1 69 1 79 1

10 1 20 0 30 1 40 1 50 2 60 1 70 1 80 0
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CASE STUDY 6

The histogram here on the side 

summarizes the different 

numbers of black particles seen 

in the previous table, each with 

its own frequency. 

In summary:

No. Black-specks 0 1 2 ≥ 3

Frequencies 37 26 12 5
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CASE STUDY 6

The shape of the histogram 

already indicates this, but the 

overlap with a normal curve 

confirms that this cannot be a 

good approximation for these 

data. 

Let see if they are distributed 

according to the Poisson law.
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CASE STUDY 6
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CASE STUDY 6

 The good agreement between « expected frequencies » and « observed frequencies » shown in the 

previous slide indicates that the variable « number of black particles » (or black-specks) is distributed 

according to Poisson distribution. 

 It is therefore reasonable to assume that the presence of these black particles in the analyzed lots is 

random. 

 This result, if on the one hand simplifies the situation because it excludes the presence of a specific 

cause ☺, on the other complicates it because it involves many possible causes and therefore its 

elimination could be difficult to solve 

63



CASE STUDY 6 - CONCLUSION

 This case study has shown that very often, in practice, experimental data are distributed in a non-

normal way and this simply because they are manifestations of quantities (or variables) that are not 

distributed in a normal way. 

So, data distributed in a non-normal way does not necessarily imply anomalous behavior!

 It is therefore a conceptual error to want to force such data into a « normal dress » that is not theirs 

and this can be a source of inconveniences (e.g., OOS that are not such). 

 It therefore makes sense to establish whether an apparently anomalous datum is out-of-trend only 

after establishing the trend for the reference parameter (or variable). 

 As seen, the use of appropriate statistic distributions allows us to extract information from these data

that is very useful for the knowledge of the processes and their control.
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CASE STUDY 6 –ADDENDUM: DATA TRANSFORMATION

 It must be said that in the presence of « non-normal » data (i.e., data not distributed according 

to a Normal), a « mathematical transformation » that normalizes them is often used.

 In practice, there are three types of transformations that can be used to normalize « positively 

tailed » (or « right tailed ») data, namely:

- logarithmic 

- square root 

- reverse (or reciprocal) 

The « reverse transformation » is usually used for the more extreme cases of « positive tailing ». 

For the less extreme ones, « logarithmic transformation » is usually used, while in the presence 

of only slightly « tailed to the right » data, the « square root» is used. 

65



CASE STUDY 6 –ADDENDUM: DATA  TRANSFORMATION

Let’s consider the case of the mean microbial count per week discussed before. Here below are the histogram 

before and after data transformation (i.e., square root)
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CASE STUDY 6 –ADDENDUM: DATA  TRANSFORMATION

Mean microbial count per week: here below are the probability plot before and after data transformation 

(square root). After transformation data are normally distributed (P-value > 0.05).
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CASE STUDY 6 – ADDENDUM: JOHNSON  TRANSFORMATIONS

The system of transformations developed by Norman L. Johnson in 1949, computes an optimal

transformation function from three flexible distribution families and, in particular:

SB or Bounded : Z = 𝛾 + 𝜂 ln  
𝑥 − 𝜀

 𝜆 + 𝜀 − 𝑥 
 

SL or Lognormal : Z = 𝛾 + 𝜂 ln  𝑥 − 𝜀 

SU or Unbounded : Z = γ + η 𝑎𝑠𝑖𝑛ℎ  
𝑥 − 𝜀

𝜆
 

in which Z is the standard normal variable, and x is the non-normal original data, all the 

necessary parameters will be returned.
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CASE STUDY 6 – ADDENDUM: JOHNSON TRANSFORMATIONS

This system has the practical and theoretical advantages of covering a wide variety of shapes.

The Johnson system can closely approximate many of the standard continuous distributions 

through one of the three functional forms and is thus highly flexible. 
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CASE STUDY 7

 Multivariate methods: a different way to look at Quality Control data !
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CASE STUDY 7

 The metrics seen so far are highly informative, but they provide a so-called univariate 

information that is referred to the single parameter (or variable) considered. 

 Experimental data, however, are now available in large quantities and provide multiple 

information for a given study subject. A typical example are process data or Quality Control 

data which are usually organized in datasets containing different types of measurements 

(chemical and microbiological) on different samples, each representative of a given 

production batch. 

 In today's common practice, despite all this mass of available data, they are considered 

individually and not globally.
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CASE STUDY 7

Analytical parameter

(or variable)
Unit Range Analytical technique Abbreviation

pH pH units 5.0 – 8.0 pH-meter ph

Water content % 1.0 – 5.0 Karl-Fisher titration h2o

Assay % 80 - 92 HPLC assay

Starting material residual content % ≤ 0.20 HPLC sm

Largest known impurity % ≤ 0.20 HPLC known

Largest unknown impurity % ≤ 0.20 HPLC unk

Total impurities % ≤ 1.0 HPLC total

Residual content solvent 1 % ≤ 5.0% Gas-chromatography solv1

Residual content solvent 2 % ≤ 5.0% Gas-chromatography solv2

Residual content solvent 3 % ≤ 1.0% Gas-chromatography solv3

Usually, despite this multiplicity of available data, they are considered individually 

and not globally.
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CASE STUDY 7

 An alternative approach is that offered by the so-called Multivariate Analysis (MVA) which 

allows the simultaneous analysis of a set of parameters (or variables) offering, compared to 

the separate analysis of each variable, the information content resulting from the relationships 

existing between the variables (*) 

 The combined use of MVA and Data Visualization allows you to quickly extract the 

information contained in the dataset and convert it into « ready-to-use knowledge ». 
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CASE STUDY 7

 As a « case study » let’s consider a set of chemical QC data (*) of the type shown in the table 

above and relating to thirty-one (31) samples each representative of a different batch of active 

ingredient produced.

 Obviously, all batches are assumed to be produced using the same production method. 

 In the following slide the first type of « graph » that can be obtained using the MVA methods is 

reported, i.e., the so-called « correlogram » (or correlation diagram). 

(*) R. Bonfichi, A different way to look at pharmaceutical Quality Control data: multivariate instead of univariate,

www.riccardobonfichi.it, 2018
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CASE STUDY 7

 Each element is a geometric figure 

that becomes the more elliptical and 

intensely colored the more the two 

variables are related to each other. 

On the main diagonal, where the 

correlation is greatest, the ellipses 

become segments. 

 Ellipses oriented to the right and 

blue colored indicate that the two 

variables are positively correlated to 

each other (i.e., as the one grows the 

other also grows), while if they are 

oriented to the left and brick-colored 

the variables are negatively correlated.
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CASE STUDY 7

The correlogram shows strong correlations between: 

 Residual quantity solvent 1 and solvent 2 residual quantity: positive 

 Residual quantity solvent 1 (solv1) and assay (assay): negative 

 Amount major impurity known (known) and total impurities (total): positive 

The correlogram also shows weak correlations between: 

 Residual amount starting material (sm) and pH value (ph): positive

 Amount largest unknown impurity (unk) and total impurities (total): positive 

 Residual amount moisture (h2o) and largest unknown impurity amount (unk): positive

 Residual amount starting material (sm) and residual moisture amount (h2o): negative
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CASE STUDY 7

It is important to underline that: 

 these correlations between the parameters, especially the stronger ones, highlight some 

aspects of the production process worthy of further study (for example, the strong 

correlation between solvent 1 and solvent 2, etc.) 

 obviously, the correlation pattern becomes more informative the better the production 

process is known in detail.
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CASE STUDY 7

A powerful MVA technique is the so-called Principal Component Analysis (PCA) which, in 

general, allows to reduce the number of variables in play to just two / three « main variables 

», below indicated with « Dim1 », « Dim2 » and « Dim3 ». 

Using pairs of these « main variables » (e.g., Dim1 and Dim2 or Dim1 and Dim3, etc.) it is 

possible to build up real « maps », such as those shown in the following slides, within which 

each lot is identified as a point. 

This gives a graphic representation of the lots under study.

I.T. Jolliffe, Principal Component Analysis, 2nd Edition, Springer, 2002
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CASE STUDY 7

Figure 2Figure 1
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CASE STUDY 7

The examination in Figure 1 shows that:

 Most of the 31 lots considered appear 

to be centered around a central core 

defined by data points 2, 8 and 10). 

 some lots form a separate group on 

the left of the diagram (25, 27, 28, 29)

 three lots appear evidently unrelated 

to the rest of the production (30, 26 

and 20).

Figure 3
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CASE STUDY 7

 Figures 2 and 3 also capture the anomaly represented by these three lots and suggest a 

possible arrangement of the aggregated data points around two centers. 

 In other words, all this means that the set of 31 lots considered is not homogeneous, but 

that next to a main population there is a sub-population of three lots that stand out from 

the others and therefore should be further investigated. 

 It is evident from these results that the « metrics » made available by MVA allow for 

overall analyzes not otherwise obtainable by studying one parameter at a time !
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CASE STUDY 7 – CONCLUSION

 The chosen example has shown how the MVA « metrics», which analyze the data « all 

together» instead of « one at a time », reveal aspects that cannot be captured by studying 

each parameter individually. 

 These too, like the « quality metrics » seen above, are not exhaustive, but provide 

information which can subsequently be further investigated. 

 Although upstream there is a very complex theory, the use of MVA methods is, in practice, 

not so complicated and the use of graphic representation makes everything rather intuitive. 
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CONCLUSIVE

SUMMARY
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CONCLUSIVE SUMMARY

 Starting from the FDA stimulus to routinely use quality metrics that go beyond those 

described in the November 2016 Guidance, but that « manufacturers believe are useful in 

establishing the quality status of their products and processes », we have taken note of the 

ever-increasing attention of the Authorities towards quantitative methods of quality 

measurement.

 The attention of the Authorities follows from the awareness that only through the use of 

quantitative methods it is possible to intercept the variability of products / processes, control it 

and therefore ensure quality. 
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CONCLUSIVE SUMMARY

 Using seven case studies a quick overview was made aimed at evaluating Quality Metrics that 

are different from one another: from those based on Graphical Methods (DESCRIPTIVE

STATISTICS) to those that use Probability Methods (INFERENTIAL STATISTICS) to get to those 

based on Multivariate Analysis Methods.

 Common features of all Quality Metrics are:

 ease of use

 ability to immediately return important information on the product / process and therefore on 

the quality status of the manufacturer.
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CONCLUSIVE SUMMARY

 The analysis of the proposed "case studies" revealed the advantages associated with an 

increasing use of Quality Metrics, namely:

 greater knowledge of the process and therefore ability to establish and control its status

 possibility to use this competence to manage (preventing or justifying them) anomalous events 

(OOT, OOS, deviations, etc.)

 possibility to document one's knowledge with quantitative and therefore measurable and 

verifiable topics. 

All this is summed up in two words: ECONOMIC ADVANTAGE!
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Before concluding, please, always remember that

Statistics is the art of learning from data
S.M. Ross, Probability and Statistics, 3rd Italian Edition, Maggioli (2015)

«  Quelli che s’innamoran di pratica sanza scienzia
son come ’l nocchier ch’entra in navilio sanza timone

o bussola, che mai ha certezza dove si vada »
L. da Vinci, Treatise on Painting, Second Part (1540 ca.) 
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