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A different way to look at pharmaceutical Quality Control data: multivariate 

instead of univariate. 
 

1. INTRODUCTION 

 

In the pharmaceutical industry, Quality Control (QC) data are typically arranged in datasets that 

contain the results from different types of measurements (chemical and microbiological) on 

different samples each representative of a production lot. 

For a given active chemical entity (API, Active Pharmaceutical Ingredient), or dosage form, it 

therefore exists a data table (or data matrix) each row of which contains the results of different 

measurements (e.g., pH value, assay, etc.) carried out on a specific lot. The first column of the 

data table contains the lot numbers. 

In practice, each row of such data table contains the information typically listed in the certificate 

of analysis issued for that lot. From a QC perspective, this information represents the “analytical 

profile” of that specific lot. 

As for each active chemical entity, or dosage form, there is a specific dataset and since all lots 

listed therein are manufactured using the same approved process, the dataset contains the 

“analytical fingerprint” of that manufacturing process. 

As required by regulations, QC data must be reviewed, evaluated and trended for knowledge 

and insight [1]. This task is usually carried out in a univariate mode, i.e., each type of data is 

individually analyzed using statistical tools such as control charts, box plots, etc. The dataset is 

therefore studied “by columns”. 

In this post, it is proposed a different way to analyze QC data, i.e., by using a multivariate 

approach instead of a univariate one. Multivariate statistical analysis is the simultaneous 

analysis of a collection of variables and it improves upon separate univariate analyses of each 

variable by using information about the relationships between the variables [2]. Moreover, the 

combination of multivariate methods with the power of the programming language R and its 

unsurpassed graphic tools, allows analyzing data mainly relying on graphics and, as stated by 

Chambers et al, “there is no statistical tool that is as powerful as a well-chosen graph” [4].  

This post shows how using R for combined multivariate data analysis and visualization, the 

information contained in QC chemical dataset can be easily extracted and converted into 

“knowledge ready to use”. 
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2. EXPERIMENTAL SECTION 

 

As case study, it has been considered a hypothetical QC chemical dataset containing the 

analytical results obtained for thirty-one (31) samples (or individuals) of a drug substance, each 

representative of a different manufacturing lot. Obviously, all lots are assumed manufactured 

using the same production method. 

Even if no missing data are expected in QC datasets, as this it would prevent the lot approval, 

if a test leads to a result below the quantitation limit, it is common practice that of reporting: 

<LOQ. In these cases, instead of removing data or variables, the result “<LOQ” has been 

replaced with the numerical value of the corresponding limit of detection (LOD). In fact, if the 

removal of rows or columns to eliminate missing data affects the dataset, the use of other 

methods (e.g., iterative methods) to impute missing data often leads to data values with no 

meaning. 

Each lot of the hypothetical dataset considered is characterized by an array of analytical 

parameters (or variables) that are listed in Table 1 together with the requirements (allowed range 

of variability or specifications) to whom they have to comply. Table 1 is completed by the 

abbreviations that it will be used, from now on, to identify the analytical parameters in graphs, 

etc. 

 

Table 1 
Analytical parameter 

(or variable) 
Units 

Allowed Range  

of Variability 

Analytical 

Technique 
Abbreviation 

pH pH units 5.0 – 8.0 pH-metry ph 

Residual water content % 1.0 – 5.0 Karl-Fisher titration h2o 

Assay % 80 - 92 HPLC assay 

Starting material residual content % ≤ 0.20 HPLC sm 

Largest known impurity % ≤ 0.20 HPLC known 

Largest unknown impurity % ≤ 0.20 HPLC unk 

Total impurities content  % ≤ 1.0 HPLC total 

Residual solvent 1 content % ≤ 5.0% Gas-chromatography solv1 

Residual solvent 2 content % ≤ 5.0% Gas-chromatography solv2 

Residual solvent 3 content % ≤ 1.0% Gas-chromatography solv3 
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Data analysis and visualization have been performed using RStudio version 1.0.153 and R 

version 3.4.1 (The R Foundation for Statistical Computing). The following specific R packages 

have been used: 

 

 tidyverse (H. Wickham, RStudio Inc., Boston, USA)[5] 

 FactoMineR (F. Husson, Agrocampus Ouest, Rennes University, France) [6, 7] 

 factoextra (A. Kassambara, HalioDx, Marseille, France) [8, 9,10] 

 corrplot (T. Wei, Fujian Agriculture and Forestry University, China) [11, 12] 

 scatterplot3D (U. Ligges, TU Dortmund, Germany) [13] 

 cluster (M. Mächler, ETH Zürich, Switzerland) [14] 

 

 

 

3. RESULTS AND DISCUSSION 

 

 In Figure 1 is displayed the correlation plot obtained on the initial data autoscaled. 
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 Figure1 
 

 
 

 

Each element of this diagram is a geometrical figure that becomes more and more elliptical and 

colored as the two initial variables gets more related each other. On the main diagonal, where 

the correlation is maximum (in fact the correlation of each element with itself is equal to one) 

the ellipses become a segment. Ellipses are right-oriented and blue colored if the two variables 

are positively correlated each other, while they are left oriented and red/brown colored if 

negatively correlated.  
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The lack of many elongated and deeply colored ellipses in Figure 1 indicate at glance that, in 

general, the variables are not highly correlated each other. 

Figure 1 in fact shows strong correlations only between:  

 the amount of the largest known impurity (known) and the total impurities amount (total) - 

 positive 

 the residual amount of solvents 2 and 1 - positive 

 the residual amount of solvent1 (solv1) and the assay value (assay) – negative 

For the rest, Figure 1 indicates weaker correlations such as those between: 

▪ residual starting material (sm) and pH value (ph) - positive 

▪ largest unknown impurity (unk) and impurities total amount (total) - positive 

▪ residual amount of water (h2o) and largest unknown impurity content - positive 

▪ residual starting material (sm) and residual water content (h2o) – negative. 

These correlations, in particular the stronger ones, indicate some aspects of this manufacturing 

process worthy of further investigation such as the influence of the largest known impurity on 

the total impurities content or that to an increase in solvent 2 corresponds an increase in solvent 

1 and a decrease in the assay value. Obviously, the correlations pattern becomes more and more 

informative as the manufacturing process in known in detail. 

The correlation matrix, visualized in Figure 1 using the function corrplot() of R corrplot 

package, can be calculated using the function cor() of R stats package. 

 

Principal Component analysis (PCA) [15], the oldest and most widely used multivariate method, 

is a powerful tool to summarize and visualize the information contained in a dataset described 

by multiple inter-correlated quantitative variables, which is a QC chemical dataset. 

As, it has been said many times, the human eye, is the best pattern recognizer. However, this is 

true only when objects to be classified can be represented in two (or sometimes three) 

dimensions, that is, when they are characterized by only two or three variables. [16]. PCA with 

its capability of reducing the dimensionality of the initial data by removing noise and 

redundancy, is a useful tool for data display. 

In Figure 2 is shown the scree plot, initially proposed by Cattell (1966) [17], which shows the 

eigenvalues of each component are plotted in successive order from the largest to the smallest. 

The scree plot has been obtained using the function fviz_eig () of R factoextra package. 
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Figure 2 

 
 

In light of the lack of strong correlations between variables already observed examining Figure 

1, the diagram in Figure 2 shoes a clear elbow only after the eighth component (i.e., at about 

98% of explained variance). Nonetheless, to gain insight into data structure, the first two 

components (that account for about 46% of the total variation in the data) are enough.  

This looks clear examining Table 2 that summarizes the numerical compositions of the first 

five principal components (or dimensions). 

 

 Table 2 
Variable Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 

h20     9.76 5.45 11.89 2.63 2.50 
ph     14.88 7.64 1.34 10.74 2.55 
assay  19.73 0.00 0.38 22.08 8.20 
sm     12.34 6.40 5.49 12.18 15.44 
known   4.44 3.20 32.92 7.76 6.96 
unk     6.03 21.10 0.72 1.95 8.13 
total   0.88 22.48 23.80 2.17 2.52 
solv1  18.17 10.89 15.32 1.19 0.51 
solv2  13.77 19.20 7.00 1.22 1.83 
solv3   0.01 3.64 1.15 38.09 51.35 
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To the first two principal components (i.e., Dim. 1 and Dim. 2), in fact, contribute the majority 

of variables (eight out of ten) and each occurs with an important coefficient in the linear 

combination. An exception is represented by the contents of known impurity (known) and 

solvent 3 (solv3) that occur, first, in the third and fourth components. The observations 

deductible from data Table 2 are clearly visualized by the diagram in Figure 3. 

 

 Figure 3 

 
 

The plot in Figure 3 displays the contribution of each variable to each principal component or 

dimension. The larger is the contribution correlation, the darker blue is the spot. This plot has 

been obtained using the function corrplot () of R corrplot package [11, 12]. 
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Scatterplot is the oldest and widely used static graphical technique to begin exploring data. 

Considering the first three components (i.e., about 63% of the total variation in the data), Figure 

4 shows a 3D-scatterplot of the individuals obtained using the scatterplot3d () function of the 

scatterplot3d R package for visualizing multivariate data [13]. In this scatterplot, each point 

represents a single lot.  

 

 Figure 4 

 
 

In spite of the high percentage of total variation in the data considered, the diagram of Figure 4 

does not visualize much about data distribution. For a more informative view it should be used 

a scatterplot matrix enhanced with contours of a 2d-density estimate such as those shown in 

Figures 5-7.  

All these diagrams, obtained using in combination the ggscatter () and the geom_density2d () 

functions of the ggplot2 R package [18], correspond to projections of the data points on two-

dimensional sections of the scatterplot shown in Figure 4. Each section is cut along a plane 

defined by two axis each corresponding to a principal component, or dimension. 
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 Figure 5 

 
 Figure 6 
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 Figure 7 

 
 

Among the three 2d-contour plots shown in Figures 5-7 that in Figure 5 is the one that better 

displays the cloud of data points. In the plane defined by the two first principal components, in 

fact, the cloud is projected in such a manner that the distortion of the cloud of points is 

minimized and, at the same time, it is captured the maximum variability. 

The exam of Figure 5 shows in fact that: 

▪ the majority of lots appear centered around a central nucleus (see data points 2, 8 and 10) 

▪ a few lots form a separate group on the left of the diagram (25, 27, 28, 29) and 

▪ three lots are evidently unrelated with the rest (30, 26 and 20). 

Figures 6 and 7 also capture the anomaly represented by these three last lots and suggest a 

possible data point’s disposition aggregated around two centers. 

In Figure 8 is displayed a PCA-Biplot obtained using the function fviz_pca_biplot () of R 

factoextra package  
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 Figure 8 

 
 

This type of graphs display simultaneously individuals (i.e., lots) and variables (i.e., analytical 

parameters). The Biplot in Figure 8 is drawn using the first and second dimensions and it shows 

that: 

▪ positively correlated variables (e.g., solvent 1 and 2, water content and single largest 

 unknown impurity, single known impurity and total impurities, pH and residual starting 

 material) are grouped together, 

▪ variables negatively related are on opposite quadrants, 

▪ the intensity of each vector measures the quality of the variable represented on the map. 

 For instance, the intensity of the vector associated to solvent3 is small as this variable is 

 well represented on starting from the fourth dimension, 

▪ the angles between vectors indicate the size of their correlations, small angles correspond to 

 high correlations (e.g., θ pH, sm = 0°)  while wide angles indicate low correlations (e.g., 

 θ solv1, known = 180°). 
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Besides showing relationships between variables, Figure 8 also displays the relationships 

existing between the manufactured lots, each being represented as a point.  

Figure 8, in fact shows: 

▪ points look spread on the plane even if more concentrated near the origin. This finding is in 

 line with what observed discussing Figure 5 

▪ a few points look isolated and at the borders of the quadrants (e.g., 30, 20 and 26). This 

 suggests that the corresponding lots display characteristics different among them and with 

 those of the rest of the lots. Being the variable assay coincident with the x-axis (the assay 

 variable “dominates” the first component as to it correspond the higher coefficient), is 

 reasonable to expect differences in this parameter among these lots. Moreover, being, for 

 instance, lot 30 in the first quadrant and 26 in the opposite quadrant, one will display an 

 assay value greater than the other.  

▪ lots whose corresponding data points are very close on the map (e.g., 21 and 24) display 

 similar characteristics while those corresponding to data points a little bit more separated 

 (e.g., 17 and 13 or 28 and 29), slightly differ in their analytical profiles. 

 

In light of the findings arising from the exam of Figures 5 – 8, it is reasonable considering 

clustering algorithms to investigate if, among the lots constituting the data set, it can be 

identified groups of similar individuals. 

In particular, using the HCPC () function of FactoMineR package to compute hierarchical 

clustering on principal components and the fviz_cluster () function of factoextra R package to 

visualize individual clusters, it can be obtained the factor maps shown in Figures 9 and 10. 
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 Figure 9 

 
 

 Figure 10 
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Both factor maps shown in Figures 9 and 10, even if obtained considering 2 and 4 principal 

components (that account, respectively, for 46% and 74% about of the total variation in the 

initial data), display five clusters, two of which show the same structure in both cases. In both 

factor maps, there are in fact two clusters (i.e., 1 and 4) clearly separated from the remaining 

data points. Cluster 1 consists of two data points (i.e., 20 and 30) while Cluster 4 of just one 

(i.e., 26). This net separation between them and from the rest of data points is a clear indication 

of a different nature of the corresponding lots with respect to all others. 

This fact was already evident examining of Figure 4.  

Interestingly, increasing the number of principal components from two to four, just leads to a 

change in the shape of clusters 2, 3 and 5 while the position of all centroids remains the same.  

The presence of multiple clusters may indicate that the production method used is characterized 

by such a wide variability that groups of similar lots form populations different from each other. 

At the extreme, in case of clusters widely separated, one can even hypothesize that lots were 

manufactured using different methods instead of just one as expected.  

In the example under analysis it applies the first possibility as the initial data have been 

intentionally built up to allow pattern recognition. 

A further increase in the number of principal components considered (e.g., eight, that 

correspond to about 98% of the total variation in the initial data) does not dramatically change 

the clusters structure as shown in Figure 11 that looks rather similar to Figure 10. In this case, 

duplicating the number of principal components considered for clustering does not duplicate 

the information returned by cluster analysis. 
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 Figure 11 

 
 

Besides hierarchical clustering other classification techniques are available (e.g., partitioning 

and mixture models) and, obviously, different classification methods can lead to different 

patterns. As hierarchical clustering techniques impose a hierarchical structure on data [19], by 

way of example, it has also been considered a different clustering approach. In particular, it has 

been selected the PAM algorithm (Partitioning Around Medoids) as it represents, among the 

partitioning clustering methods, that less sensitive to outliers. As partitioning clustering 

algorithms require to specify the number of clusters to be generated, this value has been 

calculated using the pam () function of the cluster R package [14] and visualized using the 

fviz_nbclust () function of factoextra R package. 

The resulting diagram is displayed in Figure 12. 
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 Figure 12 

 
 

Combining the pam () and the fviz_cluster () functions, respectively from cluster and factoextra 

R packages, in Figure 3 are displayed the clusters. 

 

 Figure 13 
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The comparison between Figure 13 and Figures 9 – 11 is very interesting. In fact, even if they 

show the results of two different types of cluster analysis, based on different approaches 

(hierarchical vs. partitioning) and on different data (principal components vs. initial data scaled) 

they display similar patterns. In both cases in fact data points 20 and 30 form a single cluster 

(cluster 6 in Figure 13) as well as data point 27 (cluster 7 in Figure 13). Moreover, the central 

part of the factor maps show similar patterns. 

This very short cluster analysis, even if just sketched, clearly shows the presence of underlying 

patterns in data and suggests the need of a more in-depth study.  

 

 

4. CONCLUSIONS 

 

Multivariate analysis is a tremendously powerful tool for data analysis in general and it is 

extremely useful even for pharmaceutical Quality Control data as it provides an immediate data 

overview not otherwise possible with a univariate approach. The combined use of many 

excellent statistical and graphical packages available for R makes easy the data analysis and the 

interpretation of results. The multivariate approach does not just allow to reveal patterns or 

outliers at a glance as well as fake data, but, more important, it provides in depth insight of the 

manufacturing process and of the relationships existing between analytical parameters. 
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