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How to extend the shelf life of an API ? 

Look at its Stability Data from a Multivariate standpoint ! 

 

 

The real voyage of discovery consists not  

in seeking new landscapes, but in having new eyes. 

 

M. Proust 

 

 

1. INTRODUCTION 

 

 According to ICH guideline Q1A (R2), the purpose of the stability studies is to

 “provide evidence on how the quality of a drug substance or drug product varies with 

 time under the influence of a variety of environmental factors such as temperature, 

 humidity, and light, and to establish a re-test period for the drug substance or a shelf life 

 for the drug product and recommended storage conditions.” [1] 

 To this end, the guideline provides indications on how to carry out these studies 

 (temperature, humidity, frequency of measurements, etc.) and on the evaluation of the 

 experimental results. In general, the trend of a "quantitative attribute" (the assay, usually) 

 is followed, which is expected to vary over time because of the degradation process, 

 and its behavior is compared with respect to some batches. Under normal conditions, the 

 decrease of this "quantitative attribute" occurs linearly and the slopes of the regression 

 lines relating to the lots under study are similar to each other. Usually only the intercepts 

 differ. The product shelf life is established by looking at what time the "95 one-sided 

 confidence limit for the curve intersects the acceptance criterion". [1,2] 

 Among the various operating conditions for conducting stability studies described in the 

 ICH Q1A (R2) guideline, there are also the so-called "accelerated" ones whose purpose 

 is to speed up the chemical degradation or change in the physical state of a drug substance 

 or a drug product. These studies are particularly important, especially when conducted 

 on validation batches, as they are used to estimate a possible shelf life of the product 

 under consideration. Furthermore, they are completed long before the "long-term" studies 

 and therefore the data under "accelerated conditions" are available for analysis within a 

 few months (usually six) from the start of the stability studies. 
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 The approach to the analysis of stability data described so far, which is the one used in 

 common practice, only records the occurrence of the degradation process. The attention 

 is in fact focused on the variation over time of a single quantitative attribute (e.g., assay) 

 and therefore, precisely by construction, this type of univariate data analysis can only 

 return a limited amount of information.  

 At each stability time point, however, other quality attributes are also determined in 

 addition to the assay value such as, for example: pH, water content, total impurities, etc. 

 However, their information content is usually ignored and therefore lost. 

 In this post I want to propose a different, multivariate approach to the analysis of stability 

 data and, in particular, to those pertinent to APIs aged under accelerated conditions.  

 From this new perspective, using all the data available at each stability time point, it is in 

 fact possible to identify those parameters, among those that are detected, that most 

 influence the degradation process. This allows us to hypothesize improvement 

 actions on the process aimed at reducing, if not even minimizing, degradation and 

 therefore, ultimately, extending the shelf life of the product itself. 

 As a case study, stability data obtained under "accelerated conditions" were chosen 

 precisely because, being available before the others, they allow the degradation process 

 to be investigated immediately, identifying any weak points and therefore also the 

 precautions to avoid them. 

 

 

 

2. EXPERIMENTAL SECTION 

 

 Table 1 shows the data relating to a hypothetical stability study under accelerated 

 conditions (e.g., 40°C ± 2°C / 75% RH ± 5% RH) conducted on three lots of a given 

 advanced intermediate. 
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 Table 1 

Lot No. 
Time 

(months) 
Assay (%) 

Water 
content (%) 

Total impurities 
(%) 

solv1 
 (%) 

solv2 
(%) 

solv3 
 (%) 

solv4 
 (%) 

Color 
(AU) 

1 

0 99,3 0,1 0,90 0,0500 0,0170 0,0200 0,0110 0,018 

1 99,0 0,1 1,00 - - - - 0,024 

2 98,9 0,1 1,10 - - - - 0,039 

3 98,8 0,1 1,20 - - - - 0,068 

6 98,5 0,1 1,30 0,0400 0,0120 0,0200 0,0060 0,126 

2 

0 99,8 0,2 1,00 0,1000 0,0160 0,0200 0,0110 0,016 

1 99,6 0,2 1,00 - - - - 0,023 

2 99,5 0,2 1,10 - - - - 0,038 

3 99,4 0,2 1,20 - - - - 0,070 

6 99,2 0,2 1,20 0,0600 0,0100 0,0200 0,0050 0,132 

3 

0 99,8 0,3 1,00 0,0700 0,0150 0,0200 0,0120 0,023 

1 99,7 0,3 1,00 - - - - 0,033 

2 99,6 0,3 1,10 - - - - 0,048 

3 99,5 0,0 1,20 - - - - 0,082 

6 99,2 0,3 1,30 0,0500 0,0100 0,0200 0,0100 0,134 

 

As can be seen from the data in Table 1, for each of the three validation batches the 

determination of residual solvents was carried out only at the beginning and at the end of 

the study. Since continuous variables are needed to build a model, this lack of information 

(missing data) has been filled by assuming a linear trend between the two known values 

(linear interpolation). 

Since from the data in Table 1 it can be observed that the residual content of solvent 3 is 

practically constant over time for all three batches, it will not be taken into consideration 

in the following investigation.  

 

Data analysis and visualization were conducted using Minitab 20 (GMSL S.r.l. - Via 

Giovanni XXIII, 21 - 20014 Nerviano (Milan), Italy). 
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3. RESULTS AND DISCUSSION 

 

 The classic approach to stability studies, which involves the analysis over time of the 

 assay trend, if applied to the case under study, leads to a graph like the one shown in 

 Figure 1. From it we can estimate a shelf life of about 18 months for the advanced 

 intermediate under investigation. In fact, the 95% confidence interval of the regression 

 line calculated on lot 1 values meets the lower specification limit (i.e., 97.0%) earlier (i.e., 

 18.2 months) than what happens for the analogous relative confidence intervals to lots 2 

 and 3 (i.e., 22.3 and 22.8 months). 

 For a quantitative attribute known to decrease with time, the term shelf life is 

 generally intended as the “time period in which you can be 95% confident that at least 

 50% of response is above lower spec limit”. 

 

 Figure 1 

 
 

 This graph also highlights other aspects such as, for example: 

 the differences in the intercepts of the lots, 

  the substantial parallelism between the slopes of the three lines, a guarantee of a  

  common degrading behavior over time, 

  the substantial similarity between lots 2 and 3 and the diversity of lot 1. 

 However, apart from these considerations, this approach says nothing more. 
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 On the other hand, examining the data from a multivariate point of view [3], other types of 

 findings can be obtained which are useful for understanding the degradation process 

 just described. 

 As the first part of the survey, for example, the degree of linear correlation existing 

 between the various variables measured (i.e., the analytical parameters) can be examined. 

 In this regard, Figure 2 shows the matrix plot resulting from the data reported in Table 1. 

 

 Figure 2 

 
 

 What shown in Figure 2 is a symmetric matrix (of which only the lower part is shown) 

 whose elements are scatterplots, each relating to a given pair of variables. At the bottom 

 of each scatterplot is reported,  among others, the numerical value of the linear 

 correlation coefficient of Bravais - Pearson, r, pertinent to a given pair of variables.  

 The correlations shown here, and in particular the most significant ones, provide 

 important information regarding the degradation process of the intermediate under study. 

 To facilitate the investigation, it helps to have the direct quantitative estimate of the 

 degree of linear correlation existing between the various variables, i.e., the actual 

 correlation matrix in which are collected the values of the linear correlation coefficients, 

 r, for each pair of variables. This matrix is represented in Table 2. 
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 Table 2 

 

 Assay (%) 

Water 
content 

( % ) 

Total 
impurities 

(%) solv1 (%) solv2 (%) solv4 (%) 

Water content (%) 0,577           

Total impurities (%) -0,533 -0,098         

solv1 (%) 0,784 0,415 -0,418       

solv2 (%) 0,203 -0,161 -0,879 0,231     

solv4 (%) 0,646 0,323 -0,635 0,258 0,531   

Color (AU) -0,510 -0,036 0,908 -0,456 -0,880 -0,620 
 

 Despite: 

  ▪ the variation ranges for each parameter are limited: 

 

 

Assay 
(%) 

Water  
content (%) 

Total  
impurities 

(%) 

solv1 
(%) 

solv2 
(%) 

solv3 
(%) 

solv4 
(%) 

Color 
(AU) 

Maximum 99,8 0,30 1,30 0,100 0,017 0,020 0,012 0,134 

Minimum 98,5 0,03 1,00 0,040 0,010 0,020 0,005 0,016 

 

  ▪ and the database is limited to only 15 series of values (i.e., 5 time points for 3 lots) 

 the examination of the linear correlation coefficients in Table 2 highlights some 

 interesting aspects from a chemical point of view as well as useful for the creation of a 

 Multiple Linear Regression model.  

 In particular:  

  ▪ some pairs of independent variables (e.g., total impurities and residual quantity of 

   solvent 2, etc.) are highly correlated with each other (i.e., r >> |0.5|). In the case of 

   the total impurities and color pair, the degree of linear correlation approximates  

   ideality (r = 0.908 vs. r = |1|). 

   These correlations, which in the specific case it is reasonable to assume reflect  

   interesting and useful chemical aspects, are also important for the construction of a 

   model. Variables that are so highly correlated with each other should in fact be  

   excluded to prevent problems of multicollinearity. In fact, the ideal is that all  

   independent variables (xi) are significantly correlated with the dependent variable 

   (y), but not among them.  
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 ▪ considering assay as dependent variable (y), it is observed that, except for what  

  concerns the residual content of solvent1 and 4 (solv1, solv4), it is not strongly  

  correlated (i.e.: R >> | 0.5 |) with the available regressors, indeed:  

  

    Water Total  

   Content Impurities solv1 solv2 solv4 Color 

 assay  0,577  -0.533 0.784 0.203 0.646 -0.510 

 

 

 As already seen in a previous post, for the purposes of building a model it is therefore  

 necessary, first of all, to deepen the relationship of each independent variable with the 

 dependent variable and the relationships that may exist between the independent 

 variables.  

 The analysis, carried out using scatterplots and simple linear regressions, is summarized 

 in Table 3, below, where the independent variables are ordered on the basis of the absolute 

 values of the linear correlation coefficient, from the largest to the smallest. 

 

 Table 3 

 S R-sq R-sq(adj) Correlation 

solv1 0,248748 61,40% 58,43% 0,784 

solv4 0,3057 41,70% 37,22% 0,646 

water content 0,326947 33,32% 28,19% 0,577 

total impurities 0,338788 28,40% 22,89% -0.533 

color 0,344484 25,97% 20,28% -0.510 

solv2 0,392084 4,10% 0,00% 0.203 
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 Based on the above, a model was then built on the basis of the functional relationship: 

 

𝑎𝑠𝑠𝑎𝑦 = 𝑓(𝑠𝑜𝑙𝑣1, 𝑠𝑜𝑙𝑣4, 𝑤𝑎𝑡𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑛𝑡, 𝑡𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑖𝑒𝑠, 𝑐𝑜𝑙𝑜𝑟, 𝑠𝑜𝑙𝑣2 ) 

 

 Taking into account these variables and considering only the first order terms, we obtain 

 the model described by the regression equation: 

 

Assay (%) = 102,20 + 0,018 Water content (%) - 1,902 Total impurities (%) + 

11,23 solv1 (%) - 158,1 solv2 (%) + 82,1 solv4 (%) - 1,95 Color (AU) (1) 

 

 

 Model (1) Summary 

S R-sq R-sq(adj) R-sq(pred) 

0,104575 95,80% 92,65% 51,40% 

 

 

 The model is therefore based on six variables and one constant. The value of R2 (R-sq), 

 which measures the percentage of variation in the data explained by the model, is, in this 

 case, about 96%. The value of R-sq (adj) is close to that of R-sq ( 93% vs.  96%) 

 precisely because of how the model was built. Only the predictive capacity of the model 

 is significantly lower than the previous ones, in fact R-sq(pred) = 51.4%. 

 The Analysis of Variance relating to the model (1), summarized in Table 4, shows that 

 two of the terms that appear in the model are not statistically significant, i.e., they are 

 characterized by P-value >> 0.05. An example for all is represented by the water content 

 factor to which P-value = 0.966.   

  

  



Page 9 of 18 
 

 

 Table 4 - Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 6 1,99651 0,332752 30,43 0,000 

 Water content (%) 1 0,00002 0,000021 0,00 0,966 

 Total impurities (%) 1 0,09215 0,092145 8,43 0,020 

 solv1 (%) 1 0,30458 0,304578 27,85 0,001 

 solv2 (%) 1 0,20598 0,205980 18,84 0,002 

 solv4 (%) 1 0,21461 0,214615 19,62 0,002 

 Color (AU) 1 0,01129 0,011291 1,03 0,339 

Error 8 0,08749 0,010936     

Total 14 2,08400       

 

 

 The Pareto diagram, shown in Figure 3, which distinguishes the significant effects on the 

 process output from the insignificant ones, is in line with the results of Table 4. 

 

 Figure 3 
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 In Figure 4, here below, are summarized the diagrams for residuals analysis.  

 

 Figure 4 

 
 

 

 The initial model, described by equation (1), was refined by progressively eliminating the 

 insignificant terms. Proceeding in line with the findings that emerged from the Variance 

 Analysis of Table 4, and in just two steps, the new model described by the regression 

 equation (2) was obtained: 

 

Assay (%) = 102,04 - 2,149 Total impurities (%) +12,07 solv1 (%) - 140,5 solv2 (%) + 

86,0 solv4 (%) (2) 

 

 Model (2) Summary 

S R-sq R-sq(adj) R-sq(pred) 

0,0994065 95,26% 93,36% 90,41% 

 

 Figure 5 shows the Pareto diagram which highlights how all the factors considered are 

 now significant.  
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 Figure 5 

 
 

 

 The residuals analysis, summarized in Figure 6, shows a normal probability plot and a 

 histogram with a substantially normal trend. Scatterplot and line plot show a scattering 

 of points around zero practically free from patterns or trends. 

 

 Figure 6 
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 In Table 5 is summarized the refinement process which has been carried out with the aim 

 of: 

  reduce the standard error value S,  

  keep the value of R-sq as high as possible and 

  concurrently increase the values of R-sq(adj) and R-sq(pred).  

 

  Table 5  

Model No.  S  R-sq  R-sq(adj.)  R-sq(pred)  

1 (iniziale)  0,104575 95,80% 92,65% 51,40% 

2  0,098606 95,80% 93,47% 88,34% 

3  0,099407 95,26% 93,36% 90,41% 

 

 From the comparison between the two models (1) and (2) it appears that the refinement 

 process has led to a final model (2) which has:  

 ▪ a standard error S 5% lower than the initial model,  

 ▪ a value of R-sq (adj) which differs from R-sq by 2% approx. compared to 3.4% that 

 was observed in the initial model, but above all 

 ▪ a final predictive capacity of 90% approx. compared to an initial  51%. 

 

The goodness-of-fit of experimental data provided by model (2) is well shown in Figure 

7 where experimental data (i.e., Assay exp.) are represented by a blue line while the lower 

limit (i.e., Assay calc. - 2S) and higher limit (i.e., Assay calc. + 2S), calculated using 

model (2) and the standard error on the regression S, are represented by two red and green 

broken lines respectively. Examining Figure 7 it is observed that all experimental values 

are included among those calculated based on the model (2). 
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 Figure 7 

 
 

 

 In light of the above evidence, the model described by equation (2) therefore represents a 

 good approximation of the experimental assay data and can therefore be used to study the 

 degradation process that occurred during the accelerated stability study. 

 To this end, the examination of the regression equation (2) provides important 

 information: 

 ▪ the factors that appear in it, and which are therefore linked in some way to the  

  degradation process, are: total impurities and the residual content of solvents 1, 2 and 

  4. Solvent 3 does not appear as it was not included since the beginning.  

 ▪ the three solvents all have numerical coefficients higher than that of total impurities 

  content (i.e., 12.07, 86.0, 140.5 vs. 2.149) 

 ▪ the coefficient of variable solv2 in the regression equation has a much higher value  

  than that of variables solv1 and solv4 (i.e., 140.5 vs. 12.07 and 86.0). 
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 The examination of the regression coefficients is very important as they represent the 

 average change in the dependent variable (i.e., assay) resulting from a unit change in a 

 given dependent variable (e.g., solv2), keeping all the other variables constant. 

 Since the low P-values (i.e., P-value <0.05) in the ANOVA table associated with model 

 (2), and shown in Table 6, indicate that all dependent variables are statistically significant, 

 it is clear that the change in the residual solvent 2 content is the one that most of all 

 influences the assay value. Furthermore, having this coefficient negative sign, it follows 

 that as the residual solvent 2 content increases, the assay value decreases. 

 Such a result should not be surprising if we imagine, for example, that solvent 2 could be 

 an oxygenated solvent and that the degradation process under study is characterized by 

 the formation of oxidized species which are then responsible for the yellow color taken 

 from the powder. 

 

 Table 6 - Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 4 1,98518 0,496296 50,22 0,000 

 Total impurities (%) 1 0,14626 0,146256 14,80 0,003 

 solv1 (%) 1 0,47521 0,475215 48,09 0,000 

 solv2 (%) 1 0,25870 0,258703 26,18 0,000 

 solv4 (%) 1 0,29204 0,292044 29,55 0,000 

Error 10 0,09882 0,009882   

Total 14 2,08400    

 

 As expected from the considerations made so far, the graph in Figure 8 (MAIN EFFECT 

 PLOT) shows the average effect on assay of the various independent variables. Since, in 

 general, the steeper the segment and the more significant the effect of the factor, it is clear 

 that all those considered in the model count. The gray fields of Figure 8 show the main 

 effects for those factors which, despite being included in the initial model (1), do not 

 appear in the final one (2). 
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 Figure 8 

 
 

 The CONTOUR PLOT represented in Figure 9 is a graphical representation of the response 

 variable (assay) as a function of total impurities and residual content solvent 2 variables. 

 

 Figure 9 

 
 

 This graphical representation, obtained by fixing the values of the other two variables 

 present in the model (i.e., residual solvent 1 and solvent 4 content) around their average 

 values, shows that assay reaches its highest values (dark green area) in correspondence 

 to a low residue of total impurities and solvent 2. The latter variable, in fact, appears in 

 model (2) with a minus sign and therefore its increase negatively affects the assay value. 
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 In light of this, it is therefore reasonable to assume that a lower content of solvent 2 at 

 time zero should increase the shelf life of the product by reducing the formation of 

 impurities. This is in fact what can be observed by examining the raw data in Table 1 

 where it is found that batches 2 and 3, characterized by a shelf life longer than batch 1, 

 have at time zero solvent 2 contents slightly lower than that of batch 1 (i.e., 

 0.0160% and 0.0150% vs. 0.0170%). 

 It is interesting to note that, in the case under study, even using only the stability data 

 obtained up to the third month under accelerated conditions, after refinement, a model 

 quite similar to (2) is still obtained, and precisely: 

 

Assay (%) = 100,85 -1,357 Total impurities (%) +11,92 solv1 (%) - 125,1 solv2 (%) 

+ 101,8 solv4 (%) (3) 

 Comparing (3) with (2) we see that, apart from some differences in the numerical values 

 of the coefficients, the algebraic signs are the same in both models. 

 Even the performance of model (3) is comparable to that found for model (2), in fact: 

 

Model (3) Summary 

S R-sq R-sq(adj) R-sq(pred) 

0,0950028 95,10% 92,30% 86,47% 

 

 The combination of these evidences therefore suggests that, albeit with due precautions, 

 concrete assessments can still be made by having only the data of the third month 

 accelerated. 
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4. CONCLUSIONS 

 

 Stability studies are a mandatory activity that, in general, is routinely conducted and 

 equally routinely monitored as per official guidelines. 

 However, this activity plays a particularly important role in the initial phase, i.e., when 

 studying validation batches. 

 The traditional approach to stability studies is limited exclusively to recording the 

 occurrence of a degradation process, with the sole purpose of estimating a possible shelf 

 life for the product. 

 This approach, due to its univariate nature, however, is not able to say anything about the 

 possible causes of the degradation phenomenon and eventually suggest a way to improve 

 things. 

 The multivariate approach, on the other hand, by fully grasping the relationships that 

 exist between the different analytical parameters that are measured, and which define the 

 evolution of the purity profile over time, reveals aspects that would otherwise go 

 unnoticed. 

 In the case study chosen, for example, it was shown that in the presence of three validation 

 batches, two of which are more similar, the multivariate approach identified the residual 

 content of a solvent (i.e., solvent 2) as a possible and significant cause of the process 

 degradative. In this way, the conditions are created for an improvement of the process 

 that can be controlled in a scientific and targeted way. 

 Experimentally it was also observed that even with only the data of the third month it was 

 possible to obtain a model similar to that obtained with the data of the sixth month, thus 

 allowing us to advance hypotheses regarding the degradation process underway already 

 three months after the start of the studies.  

 Considering this, it is therefore reasonable to assume that the use of additional accelerated 

 aging techniques (e.g., 40°C ≤ T ≤ 80°C and 10% ≤ RH ≤ 75%) will make the data 

 available for analysis in an even shorter time frame.[4] 

 In any case, it is essential that, for a correct interpretation of the results, the data analyzes 

 are continuously verified against an in-depth chemical knowledge of the process. 
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