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INTRODUCTION

 Since mid-20th century we all live in the 
so-called INFORMATION AGE (aka COMPUTER

AGE or DIGITAL AGE) which is characterized 
by a huge amount of data.

 According to market intelligence 
companies the total amount of data 
created, captured, copied, and consumed 
in 2021 reached 79 zettabytes. 

79 zettabytes = 79 . 1021 bytes

Name Symbol Multiple

chilobyte kB 103

megabyte MB 106

gigabyte GB 109

terabyte TB 1012

petabyte PB 1015

exabyte EB 1018

zettabyte ZB 1021

yottabyte YB 1024
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https://it.wikipedia.org/wiki/Chilobyte
https://it.wikipedia.org/wiki/1000_(numero)
https://it.wikipedia.org/wiki/Megabyte
https://it.wikipedia.org/wiki/Milione
https://it.wikipedia.org/wiki/Gigabyte
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https://it.wikipedia.org/wiki/Trilione
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https://it.wikipedia.org/wiki/Yottabyte
https://it.wikipedia.org/wiki/Quadrilione
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Amount of data 
created, consumed, 

and stored 
2010-2025
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INTRODUCTION

Where is all this data coming from?

As an example, let’s look at social media usage in 2018. In just one minute:

Twitter users sent 473,400 tweets
Snapchat users shared 2 million photos
Instagram users posted 49,380 pictures
LinkedIn gained 120 new users

forecast for 2022 : 97 zettabytes
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So, why we need STATISTICS?
FROM A VERY GENERAL STANDPOINT:

TO DISTINGUISH SIGNAL FROM NOISE !

STATISTICS ALLOWS INFORMATION TO BE SYNTHESIZED AND CONVERTED
INTO « READY-TO-USE » KNOWLEDGE

7
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N. Silver, The Signal and the Noise: Why So Many Predictions Fail-but Some Don’t, Penguin Press (2012) 



Furthermore, we must also bear in mind that:

MEASUREMENT IS AT THE HEART OF MODERN SCIENCE

and that the ever-increasing importance of measurements of the utmost 

precision has created, or rather reaffirmed, the need for a systematic science 

of data analysis
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ATTENTION !!!

 SYNTHESIS ONLY MEANS SYNTHESIS ! 
 STATISTICAL ANALYSIS OF THE DATA NEITHER IMPROVES NOR WORSENS THEM !

 ANY SYNTHESIS INVOLVES LOSS OF INFORMATION !
 IT IS THEREFORE NECESSARY TO HAVE MORE INDICES TO RECONSTRUCT THE INITIAL INFORMATION !
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What is STATISTICS ?

In general terms, close to the use we will make of it here, STATISTICS can be 
defined as:

« Set of logical and mathematical-probabilistic tools for the study of real 
phenomena that occur with repeated determinations characterized by 

variability »
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« The measure of quality, no matter what the definition of quality may be, is a 

variable. We shall usually represent this variable by the symbol X »

W. A Shewhart, Economic Control of Quality of Manufactured Product, Van Nostrand, New York, 1931

11



INTRODUCTION

«  In every manufacturing process there is variability. The variability becomes evident whenever 

a quality characteristic of the product is measured  »

Ellis R. Ott, Process Quality Control, McGraw-Hill, New York, 1975

THIS VALID NO MATTER WHICH TYPE OF PROCESS IS UNDER CONSIDERATION

tomato cans, pencils, soap bars, automobiles, drugs manufacturing, analytical controls or else.
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Furthermore:

ALL PRODUCTION PROCESSES TEND TO DEVIATE FROM THEIR INITIAL CONDITIONS !

This happens for the most diverse reasons:

 changes in materials, personnel, environment,

 technological improvements,

 acquisition of production experience, etc.
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Do not trust data which look too constant or too “perfect” ! 

Keep in mind that:

Round numbers are always false!
Samuel Johnson (1709-1784)
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FDA is so aware of this that in its Guidance on Process Validation encourages
manufacturers to:

 Understand the source of variation

 Detect the presence and degree of variation

 Understand the impact of variation on the process and ultimately on product attributes

 Control the variation in a manner commensurate with the risk it represents to the
process and the product.

FDA Guidance for Industry – Process Validation: General Principles and Practices (January 2011)

INTRODUCTION
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« Manufacturers should use ongoing quality programs to collect and analyze product and
process information to evaluate the state of control of the process. These programs must be
capable of identifying process or product problems and opportunities for manufacturing
improvements that can be evaluated and implemented throughout the lifecycle. »

This is the essence of:
 Continued Process Verification - FDA Guidance on Process Validation (2011) or

 Ongoing Process Verification during Lifecycle - Annex 15 (EudraLex - Volume 4), ICH Q10, and

ICH Q12.

INTRODUCTION
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FDA Guidance for Industry (Draft) – Request for Quality Metrics (2015)



« Quality is inversely proportional to variability »

D. C. Montgomery, Statistical Quality Control: A  Modern Introduction, 7th Edition, Wiley (2013)

VARIABILITY IS THE "ENEMY OF QUALITY"

BUT IT IS ALSO ITS "ALLY" BECAUSE IT SENDS SIGNALS !!!

INTRODUCTION
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NEVER FORGET THAT VARIATION IS SYNONYM OF INFORMATION !!!
CAN YOU GUESS WHO’S WHO? NOW IT IS EASY !

18
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A B C

Person Height (cm)

Jonathan 145

Robert 160

Alex 185



CAN YOU GUESS WHO’S WHO? NOW IT IS TOUGH!
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A B C

Person Height (cm)

Marc 173

John 172

Frank 174



TO CAPTURE THESE SIGNALS, TOOLS ARE NEEDED, NAMELY THE
"QUALITY METRICS“

Quality Metrics = Quantitative Indicators of Quality

= Key Process Indicators

INTRODUCTION
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INTRODUCTION

« Quality metrics are used throughout the drugs and biologics industry to monitor quality control 
systems and processes. Modern manufacturing includes robust quality metrics programs as a 
foundation for continual improvement of product and process quality. 

Quality metrics are one element of companies’ commitment to quality culture. »

Quality Metrics are tools provided by STATISTICS !

https://www.fda.gov/drugs/pharmaceutical-quality-resources/quality-metrics-drug-manufacturing
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STATISTICS can be sub-divided into two categories (DESCRIPTIVE, INFERENTIAL) which respond 

more to the needs of schematization: in real applications there are no such clear boundaries.

 DESCRIPTIVE STATISTICS: data collection and analysis by means of graphs and summary 

indices (position, variability and shape). 

 INFERENTIAL STATISTICS: set of methods that allow to generalize results based on a partial 

observation (sample) : process in inductive inference !
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ELEMENTS OF 
DESCRIPTIVE STATISTICS



 Is the part of Statistics that quantitatively describes or summarizes features from a collection of 

information or data

 It examines the results of real experiments, already occurred and definitive, of which 

retrospectively studies the distribution of the character (or variable) X

 It represents the « exploratory moment of reality »

 To achieve this target, Descriptive Statistics essentially makes use of two basic tools: PLOTS and 

SUMMARY INDICES

 DATA are the values ​​(or modalities) assumed by VARIABLES (or CHARACTERS)

25

DESCRIPTIVE  STATISTICS
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Data is the basis for 

any scientific decision !

DESCRIPTIVE STATISTICS

Data is the result of an experiment, 

measurement, observation and 

investigation, etc.

Most of world’s data are obtained 
as byproducts of operations !
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DESCRIPTIVE STATISTICS

Occur by measures and can be 
discrete (e.g., football 
championship scores: Inter 46, 
Juventus 42, etc.) or 
continuous (e.g., length, 
weight, purity, etc.)

There can be an order
relationship (e.g., educational 
qualification: elementary, 
middle school, university) or
not (e.g., city of residence: 
Milan, Rome, etc.)

Quantitative
Data

Attributes 
Data

Qualitative
Data

Variables 
Data



Typical examples of ordered qualitative characters (ordinal scale) are for example those of:

 customer satisfaction surveys: dissatisfied, indifferent, satisfied, very satisfied

 risk rating: minor, moderate, substantial, severe

ATTENTION !

the recoding of qualitative characters ordered on an ordinal scale is not necessarily linear! 
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 In general, it is of the sigmoid type

as shown on the side and therefore 

it makes no sense to compare the 

distances between categories even 

if coded by numerical values !

 The categories of the qualitative 

character, even if expressed 

through numerical values, always

remain ordered codes!
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QUALITATIVE DATA are represented using PIE CHARTS if no order relationships can be established 

or using BAR CHARTS if an order relationship can be established.
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DISCRETE QUANTITATIVE DATA are represented using INDIVIDUAL VALUE PLOTS.
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CONTINUOUS QUANTITATIVE DATA are represented using HISTOGRAMS which are useful not only to understand 
the distribution of values (i.e., central tendency, variability, shape) and look for outliers, but also to reveal 
multimodal distributions.

32

DESCRIPTIVE  STATISTICS 



33

DESCRIPTIVE  STATISTICS

Assay value (%)
86.6
88.2
86.4
88.3
85.4
89.9
84.8
87.0
89.6
88.8
86.1
87.9
83.0
88.5
87.2
88.0
86.5
87.5
87.0
87.0

CONTINUOUS

QUANTITATIVE DATA

can also be 

effectively 

represented even 

using BOX PLOTS
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1st Quartile, Q1:  25% of the data ≤ this value

Median, Q2: 50% of the data ≤ this value

3rd Quartile, Q3: 75% of the data ≤ this value

Interquartile range: 50% of the data

Whiskers: extend to the minimum / maximum date

point within 1.5 IQR from the bottom / top

of the box

Outlier : observation beyond upper or lower 
whisker, i.e., over 1.5IQR

J.W. Tukey, Exploratory Data Analysis, Addison Wesley, 1977



WHAT DOES A BOXPLOT TELL US AT A GLANCE?

 If it looks «compact» : most of the data are like each other since there are so many values ​​in a 

narrow range

 If it looks «stretched» : most of the data are quite different from each other, as the values ​​spread 

over a wide range

 If the median is close to the bottom: most of the data will have the lower range values

 If the median is close to the top: most of the data will have the higher values ​​of the range

 If the median is not in the center data distribution will be « tailed »

35
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Previous types of plots are useful for multiple data sets comparisons such as, for instance:

36
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TIME SERIES is a sequence of 

data points listed (or graphed) 

in time order. 

In general, data is taken at 

successive equally spaced 

points in time (e.g., process 

controls, APQR, stability 

studies, etc.)

37
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This type of graphs are also 
known as Line Graphs.



Please, duly consider the following quote: 

« …TIME SERIES PLOTS and HISTOGRAMS can be thought as COMPLEMENTARY TO EACH OTHER.

While the histogram collapses all the data, showing its overall shape, the time series plot stretches 

out the data showing the sequential information that is obscured by the histogram. »

38
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D.J. Wheeler, D.S. Chambers, Understanding Statistical Process Control, 2nd Ed., SPC Press, USA, 1992 



PARETO CHART allows you 

to sort the causes of 

defects in a process 

according to their relative 

importance.
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Until now we have always 
considered only one variable 
(UNIVARIATE). Let now assume we 
have two continuous variables 
such as those shown here on 
side.

What does this graph tell us?

As height increases, also weight 
tends to increase !

DESCRIPTIVE  STATISTICS
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 the scatterplot shows the existence of a direct and approximately linear relationship 
between height and weight, but it does not give any quantitative measure of the 
magnitude of this relationship !

 « A correlation between variables indicates that as one variable changes in value, the 
other tends to change in a specific direction »

J. Frost, Introduction to Statistics, Statistics by Jim Publishing (2019)

 Correlation methods measures the strength of association between two or more 
variables

 Correlation does not imply causation !

DESCRIPTIVE  STATISTICS

41



DESCRIPTIVE  STATISTICS
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https://www.tylervigen.com/spurious-correlations

Correlation does not imply causation !

https://www.tylervigen.com/spurious-correlations


Descriptive Statistics provides a powerful index that summarizes the magnitude of the linear

link between two variables: the Bravais-Pearson linear correlation coefficient or, more

appropriately, the Galton-Pearson linear correlation coefficient*

ρij = ρ Xi, Xj =
Cov Xi, Xj

Var Xi Var Xj

=
σij
σiσj

∀i≠j

where:
Xi = i-row of the data matrix
Xj = j-column of the data matrix

DESCRIPTIVE  STATISTICS
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*J. L. Rodgers, A. Nicewander, Thirteen Ways to look at the Correlation Coefficient, The American Statistician, 42(1), 1988, 59-66



 𝐶𝐶𝑜𝑜𝑣𝑣 (𝑋𝑋𝑖𝑖, 𝑋𝑋𝑗𝑗) is the COVARIANCE between variable 𝑋𝑋𝑖𝑖 and variable 𝑋𝑋𝑗𝑗. Is a symmetrical index
that measures the tendency of two variables to vary together.

 the LINEAR CORRELATION COEFFICIENT takes on values ​​in the range 𝜌𝜌𝑖𝑖𝑖𝑖 ∈ −1, +1 ∀𝑖𝑖 ≠ j
ρ xy = -1 in the case of perfect inverse linear relationship between X and Y
ρ xy = +1 in the case of perfect direct linear relationship between X and Y
ρ xy = 0 in the case of no correlation between X and Y: no linear relationship

the linear correlation coefficient is the fundamental measure for studying the
relationships between two quantitative variables

DESCRIPTIVE  STATISTICS
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Correlations
Height (m)

Weight (kg) 0,687

In the case of the height-weight 
data shown above, the linear 
correlation coefficient holds:
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ATTENTION!

The linear correlation coefficient only measures linear relationships!

Other types of data relationships (e.g., curvilinear) would therefore not be

detected. However, in that case, the scatterplot would help us !

The linear correlation coefficient represents an example of a synthetic indicator,

or index, which summarizes the important aspects of the variables under study.
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IN CONCLUSION:

Why is it so important 

to always graph data?

Because of 

Anscombe’s Quartet !

47

F.J. Anscombe, Graphs in Statistical Analysis, American Statistician, Vol. 27, No. 1 (1973)



ONE LAST RECOMMENDATION
When conducting data studies, never forget to contextualize them (e.g., by reporting 
specification limits or else)

48
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With the term summary indices, or statistics we mean, in practice, numerical indicators that are 

functions of data. They are of three types:

 POSITION INDICES: indicators that give an idea of ​​distribution’s central tendency. They are of two types:

 non-analytical (median, mode, percentiles) and 

 analytical (analytical means)

 VARIABILITY INDICES: indicators of the diversity / multiplicity of the values ​​of a given variable.

 SHAPE INDICES: indicators of the shape of a data distribution

49
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Let start with the POSITION INDICES :

 MODE: is the value that appears most often in a data set. 

e.g.:  3, 3, 5, 6, 7, 7, 7, 8, 8, 10 Mode = 7

Data distributions can have only one mode, more than one mode, or even no mode. In fact, if 
the values ​​constituting the data set are all different from each other, that distribution will 
have no mode.

N.B.: Mode is a broad-sense average since the property of monotonicity is not valid.
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 MEDIAN: is the middle point in a dataset, half of the data points are smaller than the median 
and half of the data points are larger.

e.g.:  0, 0, 1, 1, 2, 3, 3, 3, 4  Median = 2  (Mean = 1.89)

The median is not affected by the extreme values ​​of the data distribution ! 

It is precisely for this reason that the median is said to be a "robust" central trend indicator!    

e.g.:  0, 0, 1, 1, 2, 3, 3, 3, 4, 45, 50  Median = 3  (Mean = 10.18)

In general, a summary indicator of a data distribution is said to be "robust" if it is not 
particularly influenced by extreme values, i.e., by very large or very small ones.
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 The ALGEBRAIC (or ANALYTICAL) MEANS are generally defined by the formula:

𝜇𝜇𝑟𝑟 =
1
𝑛𝑛
�
𝑖𝑖=1

𝑘𝑘

𝑥𝑥𝑖𝑖𝑟𝑟 𝑛𝑛𝑖𝑖

�1 𝑟𝑟

That for r =1 becomes the well-known ARITHMETIC MEAN:

𝜇𝜇 =
1
𝑛𝑛 �

𝑖𝑖 =1

𝑘𝑘

𝑥𝑥𝑖𝑖 𝑛𝑛𝑖𝑖

e.g.: given: 3, 5, 10 the arithmetic mean is:  𝜇𝜇 = 1
3

3 × 1 + 5 × 1 + 10 × 1 = 1
3

18 = 6
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Why this formula? 
First of all, to say that there is no single algebraic average (i.e., arithmetic) as we are often led to 

believe.

In fact, there are also:  harmonic mean (r = -1),  geometric mean (r = 0),  quadratic mean (r = 2), 

etc. and

μ (-1) ≤ μ (0) ≤ μ (1) ≤ μ (2)

harmonic mean  ≤ geometric mean  ≤ arithmetic mean  ≤ quadratic mean

The Arithmetic Mean is the most used position index !
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The arithmetic mean has some properties, two of which are extremely important:

1. The arithmetic mean zeroes the sum (or the average) of the differences between each value 

assumed with its sign.

This property is also known as: BARYCENTRIC PROPERTY OF THE MEAN as the arithmetic mean 

can be considered the center of gravity of the dataset where the differences are balanced. 

The arithmetic mean, in fact, is the only measure in which all values ​​have the same weight !

e.g.:  3, 4, 8 mean = 5   Σ (3-5) + (4-5) + (8-5) =  - 2 - 1 + 3 = 0

54
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3, 4, 8 mean = 5  

2, 4, 6, 8, 10 mean = 6  

1, 4, 5, 8, 10, 12 mean ≅ 6,7  



2. The arithmetic mean minimizes the sum of the squared deviations, i.e.:

𝜇𝜇 = �
𝑖𝑖=1

𝑘𝑘

𝑥𝑥𝑖𝑖 − 𝛼𝛼 2𝑛𝑛𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚

e.g.: given: 10, 8, 15, 7 the arithmetic mean is:   𝜇𝜇 =  1/4  [(10×1)+(8×1)+(15×1)+(7×1)]  =  1/4 (40)  = 10

 (10 - 10)2 + (8 - 10)2 + (15 - 10)2 + (7 - 10 )2 = (0)2 +(- 2)2 + (5)2 +(- 3)2 = 0 + 4 + 25 + 9 = 38

using any other value, e.g., 8

 (10 - 8)2 + (8 - 8)2 + (15 - 8)2 + (7 - 8)2 = (-2)2 +(0)2 + (7)2 +(-1)2 = 4 + 0 + 49 + 1 = 54 > 38  c.v.d.
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 The 1st and the 2nd properties of the 
arithmetic mean are the reasons that 
explain why the differences (or 
deviations) always occur squared in 
statistical indices such as: variance, 
standard deviation, etc.

 Moreover, by squaring small 
differences are "rewarded" and large 
ones "penalized".

57
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 The position indices are summary indices that replace the values ​​of  a variable with a single 

value that can be considered "representative of all the others”.

 It is evident that, by itself, the position index is insufficient to describe a distribution of data ! 

Synthesis, in fact, involves loss of information and therefore two data distributions, for 

example, can have the same average but be profoundly different from each other.

e.g.:     3, 4, 5, 6, 7 Mean = 5     vs.    0, 0, 0, 1, 24 Mean = 5 
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As anticipated:

 the Position Indices 
alone are insufficient 
to describe a given 
distribution of data!

 therefore, we need 
other summary 
indices to complete 
the information!



The previous slides have actually introduced the need for a second type of summary indexes, namely: 

VARIABILITY INDICES

whose purpose is to measure variability!

ALWAYS REMEMBER THAT:

VARIABILITY IS THE VERY REASON FOR THE EXISTENCE OF STATISTICS !!!

IF THERE WERE NO VARIABILITY, THERE WOULD BE NO STATISTICS!!!
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 The Variability Indices are essentially of two types:

 GLOBAL INDICES: they are the ones who measure the distances of each modality from all 

the others

 DISPERSION INDICES: are those who measure the distances of each modality from a particular 

ad hoc choice as a reference (e.g., the arithmetic mean) and

they are the ones we will consider !

 A common feature of the variability indices is that of being zero in the absence of variability 

and growing in value as the variability increases!
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The most widely used « dispersion indices with respect to a center » (i.e., the arithmetic mean) are:

 Range

 Variance

 Standard Deviation

 Coefficient of Variation

62
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Range – It is the simplest dispersion index.
– It is equal to the maximum value minus the minimum value.

DESCRIPTIVE  STATISTICS

Range = Maximum age — Minimum age = 57 – 27 = 30
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where: “n” is the number of elements forming the dataset
“Xi” is the value of each observation in the dataset
“ �𝑋𝑋” is the mean value of all observations forming the dataset

Standard Deviation – measures the degree of dispersion of a dataset 
relative to the arithmetic mean.

DESCRIPTIVE  STATISTICS 

The standard deviation has the same units of measurement as the variable under study !
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Mean = 38  s = 13.2

11 years

11 years

19 years

8 years

5 years

27

27

33

46

57
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Standard Deviation
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While s refers to the sample, σ refers to the population.

DESCRIPTIVE  STATISTICS

𝜎𝜎 =
∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖 − �𝑋𝑋 2

𝑛𝑛
𝑠𝑠 =

∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖 − �𝑋𝑋 2

𝑛𝑛 − 1

The reason for the difference between the two denominators is simply that if you 
divided by n, the standard deviation (or variance) of the sample would 
underestimate the standard deviation (or variance) of the population. That is, it 
would be a « distorted statistic ».
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Where “n” is the number of the samples.

“Xi” is the value of each observation.  

“ �𝑋𝑋” is the mean value of all the samples.

Variance – is the square of  standard deviation.

DESCRIPTIVE  STATISTICS

𝑠𝑠2 =
∑𝑖𝑖=1𝑛𝑛 𝑋𝑋𝑖𝑖 − �𝑋𝑋 2

𝑛𝑛 − 1
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The variance, unlike the standard deviation, has the property of additivity. This 
means that if the elementary data form subgroups, then the total variance can 
be obtained as the sum of the variance "within groups" and the "variance 
between groups":

𝝈𝝈𝟐𝟐 = 𝝈𝝈𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾
𝟐𝟐 + 𝝈𝝈𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝟐𝟐

This « variance decomposition theorem » is the basis of the so-called

Analysis of Variance or ANOVA
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 The « between variance », 𝝈𝝈𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝟐𝟐 ,  or « variance of group means », measures 

how different the group means are from each other.

 The « within variance », 𝝈𝝈𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝒏𝒏
𝟐𝟐 , or « mean of group variances », provides a 

summary of the level of variability present within each data group.

 In applying these criteria to regression analysis using the least squares method, 
the 𝝈𝝈𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝟐𝟐 is called the explained variance while the 𝝈𝝈𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝒏𝒏

𝟐𝟐 is called the 
residual variance.

DESCRIPTIVE  STATISTICS
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Example: Let's consider the four series 
of pH values ​​below which, at first 
glance, look quite similar ...

What can we say?
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Let’s see ANOVA One-Way (or One factor) results:

Groups Count Sum Mean Variance

pH 1 5 25,2960 5,0592 0,0127

pH 2 5 24,9504 4,9901 0,2171

pH 3 5 26,3193 5,2639 0,2225

pH 4 5 26,5228 5,3046 0,3079
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What does ANOVA One-Way tell us?
 The means of squares (or variances) are greater within individual data groups than 

between them. In other words: 

variability (measured by the deviation from the mean) is higher within the groups than 
between them!

Measurement problems? May be, but it has to be ascertained 🙂🙂

 F calculated  < F tabulated : average values of the data groups are not significantly 
different from each other🙂🙂
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ANOVA possible applications? 

Comparison of multiple data series such as:

 Yields of different lots obtained using the same process or different processes

 Assay values of lots listed in the same Annual Product Quality Review

 Impact of different catalyst on chemical reaction rates

 Impact of fertilizer type, planting density and planting location in the field on final crop yield 

 etc. 



A very important and useful index of variability is the Coefficient of Variation which is 

defined as:

CV =
𝜎𝜎
𝜇𝜇

× 100

The usefulness of this index derives from the fact that it allows you to compare the variability
of two different distributions of data! 

This characteristic is very important if you think about how often the problem arises of 
comparing, for example, the variability in the yields of two processes (or of the same process 
but conducted in different conditions / places) or the variability of two machines, etc.
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Example:

Yield Process A (%): 99.8 100.1 100.0 100.7 99.7 100.0 100.2 100.7 98.8
Mean：100.0  s =   0.52   RSD = 0.52%

Yield Process B (%): 97.4 99.2 101.0 101.6 99.0 100.2 100.6 100.7 100.0
100.5
Mean：100.0  s =   1.20   RSD = 1.20%

Conclusion: The yield of both processes is, on the average, equal to 100.0%, but 
process B is more variable.

DESCRIPTIVE  STATISTICS



 The third type of indices are the: 

SHAPE INDICES

 In general terms it can be said that if the Averages give an idea of ​​the order of 

magnitude of the data series, the Variability Indices measure the difference between 

the values and the Shape Indices describe the distancing of the data distribution from 

the symmetrical form (or bell).
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Here are represented three main 

types of distributions characterized 

by histograms very different from 

each other in the "form“.
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 FISHER or SKEWNESS ASYMMETRY INDEX: 

𝛾𝛾1 =
1
𝜎𝜎3

1
𝑁𝑁 �

𝑖𝑖=1

𝑘𝑘

𝑥𝑥𝑖𝑖 − 𝜇𝜇 3 𝑛𝑛𝑖𝑖

• if 𝛾𝛾1 > 0 : positive asymmetry or right tail ( Mode < Median < Mean )

• if 𝛾𝛾1 < 0 : negative asymmetry or left tail ( Mean < Median < Mode )

• if 𝛾𝛾1 = 0 : it's just a symptom of symmetry ( Mean = Median = Mode )
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 KURTOSIS: 

𝛾𝛾2 =
1
𝜎𝜎4

1
𝑁𝑁
�
𝑖𝑖=1

𝑘𝑘

𝑥𝑥𝑖𝑖 − 𝜇𝜇 4 𝑛𝑛𝑖𝑖

• if 𝛾𝛾2 > 3 : leptokurtic curve (pointed)

• if 𝛾𝛾2 =3  :  mesokurtic or normokurtic curve (or Gaussian)

• if 𝛾𝛾2 < 3 : platikurtic curve (flattened)
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 Is that part of the Statistics that aims to make operational decisions and choices on the 
basis of limited and provisional information.

 It represents the « confirmation moment of reality »

 INFERENCE:  is the process of reaching a conclusion from a given set of statements 
(or premises)

 it is of two types: deductive and inductive
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 Example 1: Deductive Argument (from general to the particular)
Premises: Socrates is a man 

All men are mortal
Conclusion: Socrates is mortal VALID ARGUMENT

 Example 2: Inductive Argument (from particular to the general)
Premises: Last September was the rainiest on record

John’s birthday is in September
Conclusion: It rained on John’s last birthday PLAUSIBLE ARGUMENT

The basic problem in inductive inference is to devise ways of measuring the 
strength of an inductive argument!
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 To achieve this goal, Statistical Inference makes use of two methodologies : 

• Hypothesis Testing and 

• Parameter Estimation
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 Statistical hypothesis: an assertion regarding the parameters of one or more 
populations that we want to test or investigate.

 Hypothesis testing : the procedure that leads to a decision concerning a particular 
hypothesis and is based on a random sample extracted from the population of 
interest (survey).

86

INFERENTIAL  STATISTICS



 Null Hypothesis: H0, is the “default hypothesis”, the “thing that is accepted”, the 

currently accepted value for a certain parameter.

 Alternative Hypothesis: Ha or H1 and also called, in some books, “the research 

hypothesis”, involves the assertion to be tested.

87

INFERENTIAL  STATISTICS



 Example: Within a Company it is believed that, on the average, a given chemical process 
leads to 100 kg of API.  A QA Officer claims that, after the last change to the equipment, 
the average yield is no longer 100 kg.

Statistical hypothesis: H0: µ = 100 kg (Null hypothesis) two-tails

H1: µ ≠ 100 kg  (Alternative hypothesis)

Note : 
 Hypotheses are always statements about the population or distribution being studied, 

NOT about the sample.

 H0 and H1 are mathematical opposites of one another and together they cover all 
possibilities ! 
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There are just two possible outcomes:

• Reject the Null Hypothesis: we then believe H1 to be the case

• Fail to reject the Null Hypothesis : we basically keep H0

How can we do the testing ?

How can we reject H0 or not?
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To do this work we need a few concepts that are the basis of the Inferential 
Statistics and precisely:

 Probability and Probability Distribution

 alpha (level of significance ) or level of confidence

 P-value

 Test statistics

Let's open a parenthesis to introduce these concepts!
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According to the its classical definition (Laplace), Probability can be calculated dividing the 
number of successful times (or ways) an event occurs by the total number of possible 
outcomes if each outcome is equally likely.

𝑃𝑃 𝐸𝐸 = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝐸𝐸 𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(1)

The term event identifies any possible outcome of an experiment. 
An event can be simple if it consists of just one outcome (e.g., tossing a coin or a dice) or 
compound if it contains more than one outcome (e.g., tossing a coin and a dice).
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 The probability value is therefore a number between 0 and 1.

 The value 0 indicates an impossible event while the value 1 indicates a certain 
event.

 Rolling a dice, the probability that the number "4" will come out is 1/6 since 
there are 6 possible events (as many as there are faces of the die) and the 
favorable event is only one.
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If facing the occurrence of two or more events, it must be first considered if they are :

 Compatible (or not mutually exclusive)  or Non-Compatible ( or mutually exclusive)

After that, only compatible events can additionally be:

 Dependent or Independent
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Two or more events are compatible (or not mutually exclusive) if they can occur at the same
time and incompatible (or mutually exclusive) if they can’t.

For instance, if the event consists in assessing if a tablet is defective or flawless, one
possibility excludes the other. A sampled tablet can only be flawless or defective.

It is different if the event consists in assessing the possible defects affecting a tablet (i.e.,
capping, chipping, etc.). In this case the several possibilities are not mutually exclusive
among them.
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Two incompatible events are those in which if one event occurs the other cannot occur.
(Note: In this case concepts of dependent or independent events do not apply!)

In this case, the probability of occurrence of two or more incompatible (or mutually
exclusive) events is just the sum of the individual probabilities associated to each event.

P(E1 ∪ E2) = P(E1) + P(E2) Addition rule for probabilities 
for two mutually exclusive 
events

The logical connector ∪ stands for or. 
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Two or more compatible and dependent events are those that can occur at the same time.

In this case, the probability of occurrence is the sum of the individual probabilities
associated to each event diminished by the overlap:

P(E1 ∪ E2) = P(E1) + P(E2) - P(E1 ∩ E2) Addition rule for probabilities 
for two non-mutually 
exclusive events

The logical connector ∪ stands for or, while the connector ∩ stands for and.
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Two compatible and independent events are those in which the occurrence of one event
does not affect the occurrence of the other.

In this case, the probability of occurrence of two independent events is the product of the
individual probabilities associated to each event.

P(E1 ∩ E2) = P(E1) * P(E2) Multiplication rule for probabilities 
for two independent events

The logical connector ∩ stands for and.
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What the above formula should remind you ?

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰 𝑹𝑹𝑹𝑹𝑹𝑹 = 𝑺𝑺 × 𝑶𝑶 × 𝑫𝑫

S =  SEVERITY
O = OCCURRENCE
D = DETECTABILITY
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COMPATIBLE events INCOMPATIBLE events

E1 ∪ E2 P (E1 ∪ E2) = P(E1) + P(E2) - P(E1∩E2) P (E1 ∪ E2) = P(E1) + P(E2)

E1 ∩ E2

DEPENDENT events INDEPENDENT events

P (E1 ∩ E2) = 0
P (E1 ∩ E2) = P(E1) * P (E2 |E1) P (E1 ∩ E2) = P(E1) * P (E2)
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Class Location Defect type Description

Critical
General

Crack
Fracture that penetrates completely 
through the glass wall.

Spiticule
Bead or string of glass that is adhered 
to the interior surface.

Finish Broken Finish
A finish that has actual pieces of glass 
broken out of it

Major

Body Ring off
A container that has separated into two 
pieces

Finish Bent neck

The finish of the container is distorted 
to the extent that the plane of the seal 
surface is not perpendicular to axis of 
the body

General

Check
A discontinuity in the glass surface that 
does not penetrate through the glass 
wall

Chipped
Container with a section or fragment 
broken out (other than sealing surface)

Finish/Neck Crizzle
A finish or neck that has several fine 
surface marks

…. …. … …

Let’s consider a few types of defects that could occur in glass vials:
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and assume that in a 1000000 clear glass vials batch, 30000 are flawed because of 
cracks, 10000 are flawed  because of spiticules, 20000 are flawed because of bent 
neck and 40000 are yellow colored. 
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Let assume, for simplicity, that these defects are mutually exclusive and that the 
probability of observing any one of these events for a single vial is:

Casual variable
Possible 

Outcomes
Probability

Glass vial defect

Crack 0.03

Spiticule 0.01

Bent neck 0.02

Yellow color 0.04
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The probability of choosing at random an unacceptable vial (i.e., cracked, spiticuled, 
bent necked or yellow colored) is: 0.03+0.01+0.02+0.04 = 0.10 or 10%

Consequently, the probability of choosing at random an acceptable vial is: 1 – 0.10 
= 0.90 or 90%.

The four outcomes listed in the table and their associate probability values form 
a sample probability distribution which can be graphically represented as:
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 A distribution (or probability distribution) is a set of values of a variable (in this case: 
glass vials defects), along with the associated probability of each value of the variable.

 Distributions are usually visualized plotting the variable on the x-axis and the 
probability on the y-axis.

 In the example in the previous slide the distribution is discrete, i.e.,  it can assume a 
finite number of values.

 If, on the other hand, a random variable takes on all the values belonging to an 
interval (a, b) then it is called continuous.
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Poisson Distribution
Discrete data and Discrete probability curve

Normal Distribution
Continuous data and Continuous probability curve
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 In general, distributions can be numerically described using three categories of 
parameters: 
• central tendency (e.g., mean) 
• variation / spread  (e.g., variance, standard deviation) 
• shape (e.g., skewness) 

 The mathematical function that associates a probability value to each value 
assumed by the variable is called the probability function (Discrete Distribution)
or probability density function (Continuous Distribution).
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The most important probability distributions belonging to these two categories are:

• Binomial and Poisson : discrete

• Normal (or Gaussian) : continuous

• Student’s t-distribution : continuous

Let’s start with Poisson’s Distribution
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Introduced by Siméon Denis Poisson in a book he wrote regarding the application of 
probability theory to lawsuits (1837), it applies in diverse areas as:

• number of misprints on a page (or number of pages) in a book,

• number of people in a community living 100 years of age,

• number of wrong phone numbers dialed in a day,

• number of equipment failures in a given time period, etc.

Poisson’s Distribution is known as the « distribution of rare events »

S.M. Ross, A first course in probability – 9th Edition, Pearson College (2012)
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Mathematically the Poisson law it is defined as:

= (𝑛𝑛𝑛𝑛)𝑥𝑥

𝑥𝑥!
𝑒𝑒−𝑛𝑛𝑛𝑛 = 𝜆𝜆𝑥𝑥

𝑥𝑥!
𝑒𝑒−𝜆𝜆 𝑥𝑥 = 0,1,2, …

𝑝𝑝 𝑥𝑥
= 0 elsewhere 

and its variance is equal to the mean and the parameter λ:

𝜎𝜎2 = 𝜇𝜇 = 𝜆𝜆

Because of this there are «different» Poisson Distributions for different values of the mean, µ.

S.M. Ross, A first course in probability– 9th Edition, Pearson College (2012)
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Beyond all these apparently abstract aspects, the Poisson Distribution represents a 

useful model for various phenomena in the pharmaceutical field such as, for example:

 Black particles in tablets or vials

 Microbial counts

 Acceptance sampling plans by attributes

 etc.
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Consider the case, for example, of black particles found by inspecting the samples of 80 different 
batches of tablets (please, note that it would be the same even in case of vials or lots of APIs).

Lot No. Lot No. Lot No. Lot No. Lot No. Lot No. Lot No. Lot No.

1 0 11 2 21 0 31 1 41 1 51 1 61 0 71 0

2 1 12 2 22 0 32 1 42 0 52 2 62 3 72 0

3 1 13 2 23 0 33 2 43 0 53 4 63 4 73 0

4 0 14 0 24 0 34 1 44 1 54 1 64 1 74 1

5 0 15 2 25 0 35 1 45 0 55 1 65 1 75 2

6 0 16 3 26 0 36 0 46 0 56 1 66 0 76 3

7 0 17 0 27 0 37 0 47 2 57 0 67 0 77 0

8 0 18 0 28 2 38 0 48 0 58 0 68 0 78 1

9 1 19 0 29 1 39 2 49 2 59 1 69 1 79 1

10 1 20 0 30 1 40 1 50 2 60 1 70 1 80 0
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The histogram here on the side 
shows the different numbers of 
black particles in the previous 
table, each with its own 
frequency. 

In summary:

No. Black-
specks

0 1 2 ≥ 3

Frequencies 37 26 12 5
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Another area of ​​application of the Poisson distribution is, for example, in the Acceptance 
Statistic Sampling.
Here is an example of construction of the Characteristic Operating Curve in the Poissonian case: 

N = 100   n = 10   c = 2

𝑃𝑃𝑎𝑎 𝑥𝑥 = ∑𝑥𝑥=02 𝑒𝑒−10𝑝𝑝 × 10𝑝𝑝 𝑥𝑥

𝑥𝑥!

116

x 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Pa(x) 1 0.9197 0.6767 0.4232 0.2381 0.1247 0.0620 0.0296 0.0138 0.0062
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In regard to the Normal Curve, it is due to the French mathematician Abraham De Moivre who 
mentioned it first in a paper published on November 12, 1733 and shared only to friends.

The statistical use of the normal distribution began with Laplace and Gauss (distribution of 
errors) and Quételet made large use of it in Social Statistics (the average man theory: the 
individual person was synonymous with error, while the average person represented the true 
human being).

However, this distribution was  first called normal distribution by Sir Francis Galton in his 
lecture on Typical Laws of Heredity held  at the Royal Institution on February 9, 1877.

Karl Pearson started using the term  only in 1893.

118
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Mathematically the Normal Distribution is 
defined as follows:

𝑓𝑓 𝑥𝑥 = 1
2𝜋𝜋 𝜎𝜎

𝑒𝑒−
𝑥𝑥− 𝜇𝜇 2

2 𝜎𝜎2 − ∞ < 𝑥𝑥 < ∞

and its graphical aspect is that of a bell curve 
symmetrical with respect to µ.

In the pharmaceutical field it occurs quite 
often. A typical example is shown in the next 
slide.

S.M. Ross, A first course in probability– 9th Edition, Pearson College (2012)
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Very similar to the Normal, and very useful, is the Student t-distribution or t-distribution.
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Normal Distribution vs. Student’s t-Distribution

122

Normal (aka Gaussian) 
distribution

Student’s

t-distribution
Type of distribution continuous

Shape
bell-shaped, symmetrical,

the tails approach the horizontal axis but never touch it
Mean = Median = Mode Yes

Test statistic 𝑧𝑧 =
𝑥̅𝑥 − 𝜇𝜇
𝜎𝜎

𝑡𝑡 =
𝑥̅𝑥 − 𝜇𝜇
𝑠𝑠
𝑛𝑛

Varies with sample size No Yes

To be used when

Population or process 
Standard Deviation is 

known or

Sample Size ≥ 30

Population or process 
Standard Deviation is 

unknown or

Sample Size < 30



What is the practical use of all this?
Let see a practical example !
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Let’s consider, for example, the 10-year 
data of a critical parameter (a reaction 
temperature) whose value must be 
between 85 °C and 95 °C otherwise the 
process leads to the formation of 
unwanted impurities.

Experimental data can be approximated 
using a Normal random variable X (the 
critical temperature) characterized by:

𝑥̅𝑥 = 90 °𝐶𝐶 𝑠𝑠 = 1.9 °𝐶𝐶
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What is the probability

P (X < 85 °C and  X > 95 °C) ?

or, in other words, what is the 
probability that the critical 
temperature exceeds the 
foreseen limits ?
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The same result can also be achieved by performing the calculations by hand and making use of 
the standard tables.
It is just a matter of calculating the Z-test statistic at the two limits of the interval (85 and 95) 
around the average value of 90 °C or, much more simply, only in one of the two limits (e.g., 95°C) 
since the interval is symmetrical:

𝑍𝑍 = 𝑥̅𝑥 − μ
𝜎𝜎

= 95 − 90
1.9

= 2.63

Since from table of Normal Standardized Distribution it can be found that the area under the curve 
between 0 and z (=2.63) is 0.4957 it is straightforward to obtain the whole area under the curve 

between 85°C and 95°C as twice that value. Therefore:

P(85 < x < 95) = 0.4957 x 2 = 0.9914  or  99.14%                             c.v.d. 
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What does this mean?

There is less than 1% probability (0.85% to be precise) that 
the critical reaction parameter exceeds the limits!
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But there is also much more….

In this case, as well as in many others that occur daily, 
the possibility of OOS cannot be excluded a priori 😉😉

and, last but not least….
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 This can be considered a simple example of 

Science based QA

 The conformance to specifications can be demonstrated

 Any future actions can be taken correctly

Better Science = Better Outcomes = Less Costs
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Let’s now go back to the

Normal Distribution and its characteristics !
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Normal Distributions that can be generated by varying mean (µ ) and standard deviation (σ ) are infinite !
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To simplify :
STANDARDIZATION

In other words:

𝑍𝑍 =
𝑥𝑥 − 𝜇𝜇
𝜎𝜎

The Standardized Normal Distribution is 
characterized by:

𝑍̅𝑍 = 0 𝜎𝜎𝑍𝑍2 = 1

S.M. Ross, A first course in probability – 9th Edition, Pearson College (2012)
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 The z transformation allows to 
transform any Normal Distribution 
into the Standard Normal 
Distribution

 The values of the Z test statistic are 
plotted along the horizontal axis and 
correspond to standard deviations.

Example: The typical assay value for an 
API is 99.0% with a standard deviation of 
0.5%
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ALWAYS REMEMBER THAT:

 In all cases, these are mathematical models with respect to which the distributions of 

real data are compared.

 the use of these models is convenient only because, dealing with mathematical 

functions, the theory provides simple formulas for calculating the average and other 

parameters of practical use (e.g., variance, etc.)
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THEREFORE:

IF THE REAL DATA IS NOT NORMALLY DISTRIBUTED
IT IS NOT THE END OF THE WORLD!

If the data are not normal, they can be normalized by performing mathematical 
operations on them (e.g., natural logarithm, square root, reciprocal, etc.) or by using tests 

of a different type, the so-called « non-parametric tests ».
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Let’s consider, for 
instance, the microbial 
distribution curve shown 
in the table on the side.

T. Sandle, Data Review and Analysis for Pharmaceutical Microbiology – Microbiology Solutions, 1st Ed., (Jan. 2014)

Week No. Mean count per week

1 0.00
2 5.15
3 0.29
4 6.93
5 1.86
6 1.47
7 0.10
8 0.00
9 2.22

10 3.95
11 0.11
12 1.25
13 0.00
14 6.34
15 0.31
16 0.45
17 2.70
18 0.89
19 0.65
20 3.45
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Back to the basic concepts of Inferential Statistics essential for taking a decision (i.e., to 
reject H0 or fail to reject H0) there is that of Level of Confidence (indicated with C and 
typically: 95% or 99% or 0.95 and 0.99) which tells us how sure we are that we have made 
the right decision or choice.

The complement to 1  of C is the so-called Level of Significance, indicated with α (= 1- C) and 
equal to 0.05 or 0.01.

Practically, Level of Confidence and Level of Significance give us a measure of the same thing:

how sure we are that we are making the right decision or not !

139
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Two types of errors can be made when testing hypothesis:

 Type I error (or risk α ) : the null hypothesis is rejected when it is true
FALSE POSITIVE

 Type II error (or risk β ) : the null hypothesis is not rejected when it is false
FALSE NEGATIVE

D.C. Montgomery, Statistical Quality Control: A Modern Introduction – J. Wiley (2013)
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In summary:

What just seen represents the basis of the so-called: STATISTIC RISK ANALYSIS
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In Quality Control

 risk α, or just α, is called PRODUCER’S RISK because it denotes the probability 
that a good lot will be rejected, or the probability that a process producing 
acceptable values of a particular quality characteristic will be rejected as 
performing unsatisfactorily.

 risk β, or just β, is called CONSUMER’S RISK because it denotes the probability 
of accepting a lot of poor quality or allowing a process that is operating in an 
unsatisfactory manner relative to some quality characteristic to continue in 
operation.

D.C. Montgomery, Statistical Quality Control: A Modern Introduction – J. Wiley (2013)
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 risks α and β risks are related to each other !

 risk α is generally regarded as the worst!

 P-value is the probability of making a “type α error”

 α is the highest value of  p we are willing to tolerate and still say that a 
difference is « statistically significant »

 if P-value ≤ α the observed difference is said to be « statistically significant »

 If P-value > α the observed difference is said to be « not significant »
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In Hypothesis Testing if:

 if P-value ≤ α Reject the Null Hypothesis

 if P-value > α Fail to Reject (Accept) the Null Hypothesis
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TO MAKE IT SIMPLE:
Since a probability of making a mistake of less than or equal to 5% (α = 0.05) is normally 
accepted, in general:

• P-value > 0.05 the differences between samples are not statistically significant: 
the Null hypothesis fails to be rejected 

• P-value ≤ 0.05  the differences between samples are statistically significant:
the Null hypothesis can be rejected



Practically, the level of significance, α , is an area defined by a Zα value that represent the 
corresponding test statistic value printout in standard tables.
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Once again: but what is the practical 
usefulness of all this?

Let's go back to our QA Officer who was convinced that the 
yield of the process was no longer 100 Kg / lot 
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He considers the last 15 batches manufactured 
after the intervention and they show an average 
yield of �𝒙𝒙 = 101.2 Kg, and a standard deviation 
of s = 1.3 Kg. He tests his claim at the 0.05 
significance level (or 95% confidence level).

He calculates the test statistics t as follows

𝑡𝑡 = 𝑥̅𝑥 − μ
⁄𝑠𝑠 𝑛𝑛

= 101.2 −100
⁄1.3 15

= 3.5746

Since the value falls within the reject zone there is 
evidence to reject the null hypothesis at α= 0.05. 
In other words: the QA Officer was right !



Let’s remember the initial statistical hypothesis, i.e.:

H0: µ = 100 kg (Null hypothesis) two tails test

H1: µ ≠ 100 kg  (Alternative hypothesis)

If, instead, the assumption of the QA Officer had been that the yield was greater than 100 Kg, 
how would have been H0 and H1? Simple:

H0: µ ≤ 100 kg (Null hypothesis) one (right) tail test

H1: µ > 100 kg  (Alternative hypothesis)

and what would hypothesis testing be like?
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Once again, the test statistic would be 

calculated as before, i.e.:

𝑡𝑡 = 𝑥̅𝑥 − μ
⁄𝑠𝑠 𝑛𝑛

= 101.2 −100
⁄1.3 15

= 3.5746

This time, however, the test would have been 
all "one side only".

Even in this case, the QA Officer would have 
been right at α= 0.05 !
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STATISTICAL HYPOTHESIS TESTING is useful in many cases:

 check if a certain value lies within the confidence interval 
(typical application: determining if a result is an OOS)

 compare two datasets to see if they are really different or belong to the same 
population (typical applications of this are in: suppliers' validation, comparison of 
analytical data generated by different methods, etc.)

 check the strength of the correlation between one or more causes and the undesirable 
effect

 etc.

INFERENTIAL  STATISTICS



Let see two other practical examples !

153

INFERENTIAL  STATISTICS



154

INFERENTIAL  STATISTICS

During the production of a 
batch of tablets, 20 in-process
samples are randomly 
sampled and the weights of 
which are shown in the table 
here on the side.

Tablets weights (mg)

47.9842 50.4625 48.9013 53.4198 47.0006

51.8503 50.9037 53.7210 46.0764 53.1639

48.5344 53.1428 51.1559 49.4118 52,6852

49.6923 57.3226 49.9143 51.2395 48.1680

It is known that the process, in conditions of normal operation, produces tablets whose 
average weight is 50.36 mg and standard deviation 2.235 mg. 

We want to test the hypothesis that the process is under control, namely that: 

H0: µ = 50.36 mg vs. H1: µ ≠ 50.36 mg at a significance level of 5% (α = 0.05)
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 Sample mean is  �𝒙𝒙 = 50.7375 mg and
s = 2.6982

 Being the sample size < 30 it must be used 
the Student Distribution and the test 
statistics t can be calculated as follows :

𝑡𝑡 = 𝑥̅𝑥 − μ
⁄𝑠𝑠 𝑛𝑛

= 50.7375 −50.36
⁄2.6982 20

= 0.6256

 t1-α/2 =  t0.975 = 2.093  and  - t1-α/2 = -t0.975 = -

2.093
there is no experimental evidence to reject the 
null hypothesis and, therefore, to exclude that 
the process is « under control» at α = 0.05 (i.e., 
Level of Confidence = 95%).
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The approach just seen can also be used in reverse as, for example, in this case:

The tablets obtained from a given process are rejected if they weigh less than 95 mg or more 
than 108 mg. 

100 are checked and there are: 3 tablets < 95 mg and 5 tablets > 108 mg. 

with this information alone we can estimate the average and 

standard deviation of the production process that generated it! 

In fact, assuming the Gaussian model for the weight of the tablets, as also logical in the absence 
of specific perturbations, then….
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P (w < 95 mg) = Φ 95 − μ
σ

Φ 95 − μ
σ

= 0.03

P (w > 108 mg) = 1 −Φ 108 − μ
σ

1 −Φ 108 − μ
σ

= 0.02

from which it follows that:

95 - μ = σ Z0.03 95 - μ = σ (-1.88) µ = 101.22 mg

108 - µ = σ Z0.98 108 - µ = σ (2.05) σ = 3.31 mg
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This example was intended to show how, using simple notions of Inferential Statistics 
and: 

 taking random samples from a production line 

or 

 analyzing « processing waste »  

it is possible to « infer » from experimental data crucial information on the state of the 
process. 
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1-Sample t test. 2-Sample t test and

2-Variances test
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Hypothesis tests, such as that seen in practice applied to the case of tablets, allow you to 

determine, starting from sample data, if:

 The mean of a sample differs significantly from a specified value  1-Sample t test

 Two data group means are different  2-Sample t test

 The variances, or the standard deviations of two data groups differ  2 Variances test
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1-Sample t test

Null hypothesis:

H0: μ = µ0 The population mean (μ) equals the hypothesized mean (µ0)

Alternative hypothesis:

H1: μ ≠ µ0 The population mean (μ) differs from the hypothesized mean (µ0)

H1: μ > µ0 The population mean (μ) is greater than the hypothesized mean (µ0)

H1: μ < µ0 The population mean (μ) is less than the hypothesized mean (µ0)
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2-Sample t test

Null hypothesis

H0: μ1 – μ2 = 0 The difference between the population means (μ1 – μ2) equals zero

Alternative hypothesis

H1: μ1– μ2≠ 0 The difference between the population means (μ1 – μ2) does not equal zero

H1: μ1– μ2> 0 The difference between the population means (μ1 – μ2) is greater than zero

H1: μ1– μ2< 0 The difference between the population means (μ1 – μ2) is less than zero
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2-Variances test

Null hypothesis
H0: σ1 / σ2 = 1 The ratio between the first population standard deviation (σ1) and the second 

population standard deviation (σ2) is equal to 1.

Alternative hypothesis
H1: σ1 / σ2 ≠ 1 The ratio between the first population standard deviation (σ1) and the second 

population standard deviation (σ2) does not equal 1

H1: σ1 / σ2 > 1 The ratio between the first population standard deviation (σ1) and the second 
population standard deviation (σ2) is greater than 1

H1: σ1 / σ2 < 1 The ratio between the first population standard deviation (σ1) and the second 
population standard deviation (σ2) is less than 1
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Let's see a few practical examples
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Let’s consider two series of pH values, 

one determined in-house on real 

samples and the other reported on 

the corresponding CoAs provided by 

the supplier together with the 

samples.

Sodium Acetate pH values

In-house Supplier’s CoA

Sample 1 8.1 8.1

Sample 2 8.3 8.1

Sample 3 8.2 8

Sample 4 8.5 8.4

Sample 5 8.5 8.4

Mean value 8.32 8.2

On the average are the two series of data here above 
reported, statistically different or not?
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Let’s first look at data visualization 
using boxplots.

Box widths look rather similar, but, 
apart from this, we cannot say 
much more.

The t-test can tell us if the two 
mean values are statistically 
different or not.
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Descriptive Statistics

Sample N Mean StDev SE Mean
In-house pH values 5 8,320 0,179 0,080
Supplier pH values 5 8,200 0,187 0,084

Estimation for Difference
Difference 95% CI for

Difference
0,120 (-0,154; 0,394)

Test
Null hypothesis H₀: μ₁ - µ₂ = 0
Alternative hypothesis H₁: μ₁ - µ₂ ≠ 0

T-Value DF P-Value

1,04 7 0,334 As P-value > 0.05,  we fail to reject H0 No difference !
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The fact that there is no statistically 
significant difference between the 
average values of the two data groups 
suggests that, reasonably, there is no 
difference between the two methods 
of determining pH. 

Instead, consider the data in the table 
here on the side. In this case, Sodium 
Acetate is provided by a different 
supplier.

Sodium Acetate pH values

In-house Supplier’s 1 CoA

Sample 1 8.1 8.6

Sample 2 8.3 8.6

Sample 3 8.2 8.5

Sample 4 8.5 8.9

Sample 5 8.5 8.9

Mean value 8.32 8.7

Are the two mean values here above reported, statistically different or not?
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In this case it is evident that the two pH 
data distributions are shifted from each 
other.

However, box widths are comparable 
data spreads are similar.

The t-test can tell us if the two mean 
values are statistically different or not 
while the F-test can tell us if data 
spreads are really comparable or not.
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Descriptive Statistics

Sample N Mean StDev SE Mean
in-house pH values 5 8,320 0,179 0,080
supplier 1 pH values 5 8,700 0,187 0,084

Estimation for Difference

Difference 95% CI for
Difference

-0,380 (-0,654; -0,106)

Test
Null hypothesis H₀: μ₁ - µ₂ = 0
Alternative hypothesis H₁: μ₁ - µ₂ ≠ 0

T-Value DF P-Value

-3,28 7 0,013
As P-value < 0.05,  there 
is evidence to reject H0

There is a difference !
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The fact that there is a statistically significant difference between the average values of the two 
data groups suggests that, reasonably, there is difference between the two methods of 
determining pH.

This finding is not so unusual if comparing data from different laboratories !

In such a case, even if the analytical techniques are different from each other, they should be of 
comparable precision and accuracy and therefore

2-Variances test : Determine whether the variances or standard 
deviations of two groups differ. You can use this
test to compare the process variance before and 
after you implement a quality improvement 
program. 
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Descriptive Statistics
Variable N StDev Variance 95% CI for σ

In-house pH values 5 0,179 0,032 (0,102; 0,518)
Supplier 1 pH values 5 0,187 0,035 (0,113; 0,510)

Test

Null hypothesis H₀: σ₁ / σ₂ = 1
Alternative hypothesis H₁: σ₁ / σ₂ ≠ 1
Significance level α = 0,05

Method Test
Statistic DF1 DF2 P-Value

Bonett 0,02 1 0,896

Levene 0,00 1 8 1,000
As P-value > 0.05  there is no evidence to reject H0 !  
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STATISTICAL INTERVALS
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 Different practical problems call for different types of intervals !

 There are three main types of statistical intervals that may be calculated from 
sample data:

 Confidence intervals

 Prediction Intervals

 Tolerance Intervals

G.J. Hahn, W.Q. Meeker, Statistical Intervals: A Guide for Practitioners – J. Wiley & Sons (1991)
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Confidence Interval : concept

– a range that contains, with know probability, the true value of a population 
parameter (e.g., the mean µ or the standard deviation σ)

– they quantify our knowledge, or lack thereof, about a parameter or some other 
characteristic of a population, based upon a random sample.

INFERENTIAL STATISTICS
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Confidence Interval : example

Let’s consider the pH values measured on five different lots of Sodium Acetate provided by a chemical 

manufacturer: 8.1, 8.3, 8.2, 8.5, 8.5.

Sample mean (𝑥̅𝑥) and standard deviation (s) are  𝑥̅𝑥 = 8.32  and s = 0.18 pH units.

A two-sided 95% confidence interval for the mean μ of the population of sampled Sodium Acetate lots 

is:

[μl,μu] = 8.32 ± 1.24 (0.18) = [8.10, 8.54]

This means that we are 95% confident that the interval 8.10 – 8.54 pH units contains the unknown 

pH mean value (μ) of the population of Sodium Acetate lots provided by the chemical manufacturer.

INFERENTIAL STATISTICS
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 Confidence Interval: example

2017 2018 2019 2020 2021

91,0 97,0 98,8 93,2 95,0

93,8 90,8 99,4 91,0 95,7

97,4 91,8 98,0 87,1 94,2

95,4 96,7 89,5 88,5

79,2 93,3

Let’s consider a retrospective analysis of 
temperature measurements (e.g., for 
APQR) which should not exceed a limit 
of 100 °C.
Individually none of the values is equal 
or greater to 100°C but….
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ATTENTION
 The example just shown does not apply only to a situation like the one 

described (e.g., APQR) but also, for example, to the management of OOS.

 An « anomalous data », in fact, is not so « anomalous » if the average of the 
population from which it derives is in an interval that exceeds a specific limit. 

When investigating an OOS always look at the Confidence Interval !
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Prediction Interval : concept

– a range that contains, with a specified degree of confidence, one or more future 
observations randomly selected from a population.

– interests a manufacturer (or user) who wishes to predict the performance of one 
or more future units.

– due to its "predictive" nature this type of interval is wider than the confidence 
interval.

INFERENTIAL STATISTICS
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Prediction Interval : example

Let’s consider the five pH values of five different lots of Sodium Acetate seen earlier. 

A two-sided 95% prediction interval to contain the pH values of all of 10 additional Sodium Acetate 

lots randomly sampled from the same population is:

[𝑦𝑦10𝑙𝑙 , 𝑦𝑦10𝑢𝑢 ] = 8.32 ± 5.23 (0.18) = [7.38, 9.26]

This means that we are 95% confident that the pH values of all 10 additional lots of Sodium Acetate 

manufactured by the chemical manufacturer will be contained within the interval 7.38 – 9.26 pH 

units.

INFERENTIAL STATISTICS
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Tolerance Interval : concept

– a range expected to contain, with a specified degree of confidence, at least a 
specified proportion of the units from the sampled population

– within Six Sigma: tolerance limits reflect customer requirements and should be 
established before a product is designed

– this interval would therefore be of particular interest in setting limits on process 
capability

– tolerance intervals reflect the variation produced by a particular part, process and 
design

INFERENTIAL STATISTICS
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Tolerance Interval : concept

– the concept of statistical tolerance interval it can be seen as an extension of that 
of prediction interval in case one wishes to draw conclusions about the 
performance of a relatively large number of future units (e.g., 100, 1000, or any 
number m), based upon the data from a random sample from the population of 
interest.

INFERENTIAL STATISTICS
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Tolerance Interval : concept

– Assume, for instance, that measurements of tablets weights have been obtained 
on a random sample of 20 units taken out from a production process. 

– A tolerance interval calculated for such data provides limits that one can claim, 
with a specified degree of confidence (e.g., 95%), contains the (measured) weights 
of at least a specified proportion (e.g., 90%) of units from the sampled population.

The two percentages are well distinct: one (i.e., 90%) refers to the percentage of 
the population while the other (i.e., 95%) deals with the degree of confidence 
associated with the claim (i.e., that the interval encloses at least 90% of the 
population). 

INFERENTIAL STATISTICS
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Tolerance Interval : example

Let’s consider the five pH values of five different lots of Sodium Acetate seen earlier. 

A two-sided 95% tolerance interval to contain at least 99% of the sampled population of Sodium 

Acetate is:

[𝑇𝑇0.99
𝑙𝑙 , 𝑇𝑇0.99

𝑢𝑢 ] = 8.32 ± 6.60 (0.18) = [7.13, 9.51]

This means that we are 95% confident that the interval 7.13 – 9.51 pH units contains at least 99% of 

the population of Sodium Acetate lots provided by the chemical manufacturer.

INFERENTIAL STATISTICS
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The use of Tolerance Intervals may be extremely important in OOS management !

 Consider the case of a CU test in which 10 tablets are tested, of which 9 are perfectly in 

specification with values ​​between 99.5% and 101.5% of the label claim while one is 70%. 

 Since all tablets have been destroyed in the analytical process and there is no way to establish if 

the anomalous result was due to the specific tablet or to some analytical error

What do you do? 

Reject the batch although there is no historical or specific evidence of any issue ?
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Obviously no !

It can be performed an “extensive” CU testing based on the Tolerance Interval concept to 

get, for instance, 99% confidence that 99% of the tablets are between 99.5% and 101.5% 

of the label claim.

In this way the size of the new test will be at least established on a 

scientific and non-questionable basis !
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Before starting, let’s immediately dispel a 
myth.

A conventional plot « average ± 3s » such 
as that shown here on the side

IS NOT A CONTROL CHART !
Why?

simply because it doesn't 
control anything especially if 

used as it is often done !
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The interval defined by « average ± 3s » brackets virtually 

all of the process outcomes regardless of whether or not 

the process is operated predictably !
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Always remember what we said at the beginning: 

the average is not a robust index because it is sensitive to 

outliers, whether they are too small or large!
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Shewhart’ Control Charts

« The purpose of Shewhart’s Control Charts is to detect a lack of control when it exists, 

and it should be able to do so, at least most of the time, even when the out-of-control 

data are used to compute the limits. Otherwise, the technique would not be of much use »

D.J. Wheeler, D.S. Chambers, Understanding Statistical process Control, 2nd Ed.,  SPC Press (1992) 
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Shewhart’ Control Charts

« Notice that there is no requirement of normality (or even approximate normality) …

Control charts work well even if the data are not normally distributed. This issue was 

addressed by Shewhart in his first book, and it should never have been an issue »

D.J. Wheeler, D.S. Chambers, Understanding Statistical process Control, 2nd Ed.,  SPC Press (1992)

W.A. Shewhart, Economic Control of manufactured product, Van Nostrand (1931)
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Shewhart’ Control Charts

Shewhart’s Control Charts consist of the following main elements:

 A centerline (average or median) which represents the average (or median) of the 

values plotted in that panel

 UCL and LCL (upper and lower control limits) are the limits that a stable process is very 

unlikely to cross. These limits are not specification limits.

 A plotted parameter (i.e., individual values, means, ranges, etc.)
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Shewhart’ Control Charts

 There is a close connection between control charts and hypothesis testing.

 The control chart is a test of the hypothesis that the process is in a state of 
statistical control:

H0 : process mean = µ0
H1 : process mean ≠ µ0

 Control charts are used to detect departures from an assumed state of statistical 
control.     
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Special Cause Variability 

Special Cause Variability 

Common Cause Variability 

Common 
Cause 

Variability 

Special 
Cause 

Variability 

The Shewhart Concept of Variation
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Out of Control

In Control

A process in (statistical) control is a predictable process !
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 the causes that contribute to the variability of a production process are essentially of two 

types: common causes and special (W.E. Deming) or assignable (W.A. Shewhart) causes.

 a process is said to be under statistical control when its variability is due only to 

common causes.

 « … a phenomenon will be said to be controlled when, through the use of past experience, 

we can predict, at least within limits, how the phenomenon may be expected to vary in the 

future. »                             predictability

197

W.A. Shewhart, Economic Control of Quality of  Manufactured Product, Van Nostrand (1931) p. 6
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« … we must also accept as axiomatic that a controlled quality will not be a constant quality. Instead, a 

controlled quality must be a variable quality. This is the first characteristics.»

W.A. Shewhart, Economic Control of Quality of  Manufactured Product, Van Nostrand (1931) p. 6

«  Stability, or the existence of a system, is seldom a natural state. It is an achievement, the result of 

eliminating special causes one by one on statistical signal, leaving only the random variation of a stable 

process. »
W.E. Deming, Out of the Crisis, MIT Press (2000) p. 322

198



CONTROL CHARTS

Moreover,

«  Statistical control does not imply  absence of defective items. Statistical control is a state of 

random variation, stable in the sense that the limits of variation are predictable. »

«  Statistical control of a process is not an end in itself. »

W.E. Deming, Out of the Crisis, MIT Press (2000) p. 354
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SUMMARIZING 

While perfect stability is an unreachable goal, a relative stability is 
certainly attainable

Control Charts are used to monitor the process and to be sure that it 
remain stable



201

CONTROL CHARTS

REMEMBER !

A stable process does not have to be 
normally distributed !

There are many processes which naturally 
produce skewed distributions !

An example for all:
Related Substances content
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Let’s start with the

Control Charts by Variables
but, first of all, let's make a premise: all charts are 

"double"
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Why do we need two charts?

 The top chart (individual or bar-type)

• shows changes in the individual or average values ​​of the process
• visualize long-term variability

 The bottom chart (associated to variability)

• shows short-term variability
• contains the elements for calculating the control limits in the upper chart

A process to be "in control", the datapoints must lie within the control limits in both charts.
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Control Chart Type Control Chart Name Central Line Upper and Lower 
Control Limits

�𝑿𝑿-R Average and Range Chart �𝑋𝑋 R
�𝑋𝑋 ± A2

�𝑅𝑅
D4
�𝑅𝑅，D3

�𝑅𝑅

�𝑿𝑿-s Average and Standard Deviation Chart �𝑋𝑋s
�𝑋𝑋 ± A2

�𝑅𝑅
B4𝑠̅𝑠,B3𝑠̅𝑠

𝑴𝑴𝑴𝑴-R Average of Medians and Range Chart Me R
�𝑀𝑀e ± A4

�𝑅𝑅
D4
�R，D3

�R

I-MR Individual Value and Moving Range Chart x   Rm
𝑥̅𝑥 ± 2.660 �𝑅𝑅m

3.267 �𝑅𝑅m

Control Charts by Variables
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I-MR Control Charts

• I-MR charts are generally used when it is difficult or impossible to measure in subgroups. This 

occurs when measurements are expensive or destructive, low production volumes of products 

or products have a very long or continuous cycle time.

• Typical applications of I-MR Charts are for limited series of individual measurements like assay 

values, yields, etc. Annual Product Quality Reviews (APQR)
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• The range of results within each data set is used to 

estimate overall variability. 

• Xbar-R Charts are generally used to monitor the 

mean and variation of a process when you have 

continuous data and subgroup sizes of 8 or less. 

• For subgroups that contains 9 or more values, it is 

in general recommended of using Xbar-S Charts. 

Xbar-R Charts
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• The standard deviation of results within each 

data set is used to estimate overall variability. 

• Xbar-S Charts are generally used to monitor 

the mean and variation of a process when 

you have continuous data and subgroup sizes 

of 9 or more. 

Xbar-S Charts
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 In the following four slides, eight additional tests are summarized which are 

used to interpret the trends in Shewhart's charts.

 The occurrence of any of the conditions predicted by these tests is an indication 

of the presence of possible identifiable causes of variability that should be 

investigated and, if confirmed, corrected.

ISO 8258:2004 Shewhart control charts
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Identification of assignable causes

Test 1. One point outside zone A
Test 2. Nine points in a row (in zone C or 

other) on the same side of center line
x

x

CL

UCL

LCL

A３σ

A-３σ

B２σ

C 1σ

C-１σ

B-２σ
x

UCL

LCL

A

A

B
C

C
B

CL

ISO 8258:2004 Shewhart control charts
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Identification of assignable causes

Test 3. Six points in a row systematically 
increasing or decreasing

Test 4. Fourteen points in a row 
alternating up and down

x
x

x

CL

UCL

LCL

A

A

B
C
C
B

UCL

LCL

A

A

B
C
C
B

CL

ISO 8258:2004 Shewhart control charts
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Test 5. Two out of three points in a 
row in zone A or beyond

Test 6. Four out of five points in a 
row in zone B or beyond

x x

x

x

x

UCL

LCL

A

A

B
C
C
B

CL

UCL

LCL

A

A

B
C
C
B

CL

Identification of assignable causes

ISO 8258:2004 Shewhart control charts



UCL

LCL

A

A

B
C
C
B

CL
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Test 8. Eight points in a row on both sides of 
the central line with none in zone C

Test 7. Fifteen points in a row in zone C 
above and below the central line

x x

UCL

LCL

A

A

B
C
C
B

CL

Identification of assignable causes
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Similar to Shewhart’s Control 

Charts is the Run Chart, 

which shows a measurement 

on the y-axis plotted over 

time (on the x-axis). A center 

line (CL) is drawn at the 

Median. 

Run Charts are not just Line Graphs !
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Clusters
 groups of datapoints in one area of the chart
 may indicate special-cause variation, such as measurement 

problems, lot-to-lot or set-up variability, or sampling from a 
group of defective parts

 If the p-value for clustering < 0.05, possible clusters in data.

Mixtures
 data pattern characterized by frequent crossing of the 

center line
 Mixtures often indicate combined data from two 

populations, or two processes operating at different levels

 If the p-value for mixtures < 0.05, possible mixtures in data.
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Trend
 sustained drift in the data, either up or down
 trends may warn that a process will soon go out of control
 A trend can be caused by factors such as worn tools, a 

machine that does not hold a setting, or periodic rotation of 
operators. 

 if the p-value for trends <0.05, possible trend in data.

Oscillations
 occurs when the data fluctuates up and down, which 

indicates that the process is not steady. 
 if the p-value for oscillation < 0.05, possible oscillations in 

data
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Control Chart type Use Central Line Upper and Lower 
Control Limits

p
to monitor the proportion of defective items

that can be classified into one of two 
categories, such as pass or fail

p p± 𝑝𝑝(1 − `𝑝𝑝)/𝑛𝑛

np
to monitor the number of defective items

that can be classified into one of two 
categories, such as pass or fail

np np± 𝑛𝑛𝑝𝑝(1 − 𝑝𝑝)

c to monitor the number of defects where each 
item can have multiple defects c ̅𝑐𝑐±3 𝑐𝑐

u to monitor the number of defects per unit, 
where each item can have multiple defects. u u(-)±3 u/n

Control Charts by Attributes
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Alongside the control charts just discussed, which represent the more conventional and 
widely used ones (e.g., SPC, etc.), there are also other types for "special applications“, e.g.:

 Short Run (Z-MR) charts: using standardization (Z) allow to combine data from different 
(and short) runs in a single control chart.

 Rare Events (G and T) charts:  monitor the number of days between rare events, e.g., 
microbiological growth in highly controlled environments, etc.

 Multivariate charts (T2 and T) charts: monitor whether the process location and the 
process variability of two or more related variables are in control. They are the 
multivariate counterpart to the Xbar-R, Xbar-S, and I-MR charts.

etc.
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 It is generally believed that Shewhart's control charts are not enough sensitive for quick 
identification of slight deviations of the parameters under control

 For this reason, other types of control charts have been introduced, among which the most 
used are:

 Exponentially Weighed Moving Average (EWMA) charts

 Cumulative Sum (CUSUM) control charts 
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To check whether a particular tablet 
press can maintain a target weight of 
50 mg, one tablet is sampled every 3 
minutes and weighed. The data of 3.5 
hours of production are examined.

An I-MR card is used to control the 
process. Apart from a slight increase 
in the process average at the end, the 
chart does not reveal anything else.
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Conversely, the use of an 
EWMA chart reveals a 
significant upward trend in 
the weight of the tablets as 
the process continues.
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While the EWMA chart 
reveals the presence of an 
upward trend (difficult to 
detect with more 
conventional means, e.g., I-
MR chart), the CUSUM 
control chart allows you to 
estimate exactly when this 
process of increasing the 
weight of the tablets 
begins.
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Summarizing:

A Control Chart can:

 demonstrate whether the process is stable and consistent over time. A stable process is 
one that includes only common-cause variation and does not have any out-of-control 
points, i.e., is a predictable process.

 verify that the process is stable before you perform a capability analysis. A capability 
analysis is only valid when performed on a stable process.

 assess the effectiveness of a process change as it easily allow to compare shifts in the 
process mean and changes in the process variation.

 communicate the performance of the process during a specific period of time.
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ICH guideline Q10 on Pharmaceutical Quality System (2008) : 4 times !

« To develop and use effective monitoring and control systems for process performance 
and product quality, thereby providing assurance of continued suitability and capability of 
processes » (page 3)

« Pharmaceutical companies should plan and execute a system for the monitoring of 
process performance and product quality to ensure a state of control is maintained. An 
effective monitoring system provides assurance of the continued capability of processes 
and controls to produce a product of desired quality and to identify areas for continual 
improvement » (page 8)

etc.
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FDA Guidance for Industry on Process Validation (2011) : 8 times !

« We recommend that a statistician or person with adequate training in statistical process 
control techniques develop the data collection plan and statistical methods and procedures 
used in measuring and evaluating process stability and process capability (page 14) »

« Production data should be collected to evaluate process stability and capability. The 
quality unit should review this information. If properly carried out, these efforts can 
identify variability in the process and/or signal potential process improvements. (page 15) »

etc.
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For illustrative purposes, let’s go back 

to an example we saw earlier. 

Here is the conventional plot showing 

« average ± 3σ » for the HPLC assay 

values of 102 lots of an API 

manufactured in 2017.
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Here, on the side, is the 
histogram that shows the 
same data distribution by 
representing for each assay 
value its frequency.

Using histograms is very easy 
to graphically identify the 
central tendency of the data 
as well as the shape of the 
distribution.
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Here, on the side, is the I-MR Chart 

(mR = 2) of the same data distribution.

This chart provides information on the:

variation inherent to the process
known as process spread or VOICE OF
THE PROCESS, VOP)

and

 variation allowed by the Customer
known as process specifications or 
VOICE OF THE CUSTOMER, VOC (i.e., 
another department, a colleague, 
etc., not necessarily the end user!)
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As long as the process spread 
(measured by the standard 
deviation, σ) lies within the 
process specifications, the process 
is said capable of delivering the 
quality required by the Customer.

The narrower is the process 
spread, the more capable is the 
process ! 
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Consequently, when the process 

spread is wider than the process 

specifications, the process is said 

incapable of delivering the 

quality required by the 

Customer.
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Quality is usually measured using the following indicators:

 defective units per million (ppm)

 defects per unit (dpu)

 defects per million opportunities (DPMO)

 defect yield

BUT

DEFECT YIELD is an indicator not informative in light of a process improvement as it cannot answer 
questions like:

 Is defectiveness a problem caused by the positioning of the mean or by excessive variability?

 To improve, should we then move the average or reduce process variability?

need of more efficient indicators !
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Capability Indices
Cp or Capability Ratio is defined as:

𝐶𝐶𝐶𝐶 = 𝑈𝑈𝑈𝑈𝑈𝑈 −𝐿𝐿𝐿𝐿𝐿𝐿
6 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝑋𝑋)

= 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

and it measures the ratio between the admissible dispersion for the process (difference between the 
specification limits set by the “customer”) and its natural tolerance (6σ). 

With a predictable process the Capability Ratio defines its ability to operate within the 
specifications.
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With a predictable process the Capability Ratio defines its ability or “elbow room” to 

operate within the specifications.

With an unpredictable process the Capability Ratio just defines its hypothetical

“elbow room” to operate within the specifications.
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6σ is used because in a normal distribution, such as the one under consideration, 99.73% of the 
observations is comprised of 6 times the standard deviation. 

Because of this, Cp can be calculated only if the process is stable and distributed normally. 

Cp is a good process indicator, but alone it is not enough because it only controls the process 
dispersion, but not its centering.

Cp indicates how capable a process is but only if it is centered !
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 if Cp = 1  0.27% of the observations do not conform to the specifications (± 3σ)

 if Cp = 1.33  0.0064% of the observations do not conform to the specifications (± 4σ)

 if Cp = 1.67  0.000057% of the observations do not conform to the specifications (± 5σ)

As general indication:

 if Cp ≥ 1.33 the process can be considered satisfactory

 if 1.00 ≤ Cp < 1.33 the process can be considered adequate

 if Cp < 1.00 the process is inadequate
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Target USLLSL

3σ3σ

Target USLLSL

6σ6σ

Target USLLSL

4σ4σ

Cp = 1

Cp = 1.33

Cp = 2
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 Cpk or Centered Capability Ratio is defined as: min {(USL - µ)/3σ ; (µ - LSL)/3σ } or min {CPU ; CPL}

 Cpk ,beside dispersion, also considers the position of the process with respect to the specification limits.

 if  Cpk > 1 : data are within specification limits

 if 0 < Cpk < 1 : part of the observations lie beyond the specification limits

 if Cpk < 0 : data, on the average, are out of specifications

 if Cpk = 1 : 99.73% of the observations are within the specification limits (i.e., only 3 
observations on 1000 are rejected)
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In terms typical of Quality Control: 

 Cpk > 1 : the process works well

 Cpk = 1 : we are at the limit of the processing of non-conformed items

 0 < Cpk < 1 : non-compliant items are processed

 Cpk = 0 : half of the items are out of specification

 -1 < Cpk < 0 : more than 50% of the items are out of specification

 Cpk < -1 : nearly all items are out of specifications
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 In the manufacturing industry many Companies require their suppliers Cpk values of 1.33 or even 2. 

Cpk = 1.33 means that the difference between the average value µ and the tolerance limit is 4σ,

i.e., 99.994% of the product is within specification.

 An improvement from 1.33 to 2 is not always justified! It is a matter of a cost-benefit assessment.

 Cpk can never be greater than Cp, in the best case the two coincide.

 Cpk = Cp if the average value corresponds with the average value of the specification. Cp can 
therefore indicate how much better Cpk would be if the process was such that the distribution 
center was close to the midpoint of the specifications.
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 Beside the Capability Ratio (Cp) and the Centered Capability Ratio (Cpk) we can define two other 

performance indices, i.e., Performance Ratio (Pp) and the Centered Performance Ratio (Ppk) which 

will have the same numerators as the capability indices, but whose denominators are based upon 

descriptive statistics such as the interval defined by « average ± 3σ » considered earlier.

 When the process is operated predictably the performance indexes will characterize the same 

things that are characterized by the capability indexes. However, when the process is not 

operated predictably the performance indices will describe the past.
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Pp or Performance Ratio is defined as:

𝑃𝑃𝑃𝑃 = 𝑈𝑈𝑈𝑈𝑈𝑈 −𝐿𝐿𝐿𝐿𝐿𝐿
6𝑠𝑠

= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑏𝑏𝑏𝑏 𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

and it is important to remember that :

The extent to which the Capability Ratio (Cp) exceeds the Performance Ratio (Pp) 

defines the degree of unpredictability for a process and 

the opportunity that exists for improving that process !
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Threshold State                  Cpk < 1 
Product trouble 
 
Cp > 1 Center the process 
 
Cp < 1 Reengineering of the process 
 

Ideal State                          Cpk > 1 
No trouble 
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State of Chaos                     Ppk < 1 
Double Trouble 
 
Pp > 1 Centering the process may help, but 
full process potential requires predictable 
operation. 
 

Brink of Chaos                   Ppk > 1 
Process Trouble 
 
Full process potential requires predictable 
operation. 
 
 

 Some Nonconforming 
Product Produced 

100% Conforming 
Product Produced 

 

D.J. Wheeler, The Six Sigma Practitioner’s Guide to Data Analysis, 2nd Ed., SPC Press(2010)
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SHORT-TERM CAPABILITY METRICS

 Cp and Cpk belong to the so-called short-term capability metrics, i.e., they are based on the 
short-term standard deviation of the process σST

 If only a limited sample is used to estimate the process capability, then the sample only 
represents short-term capability regardless of which formulas are used. 

 « short-term variation » is the variation observed when a sample of data is collected in a short 
period of time under essentially the same conditions. Such a sample is often called «rational 
subgroup»
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LONG-TERM CAPABILITY METRICS

 For each Capability Index (i.e., Cp, Cpk) there is a corresponding Performance Index (i.e., Pp, 
Ppk) which measures how well the process performs over the long term.

 Long-term capability metrics are based on the long-term standard deviation of the process σLT.

 « Long-term capability metrics » measure process variation over a period of time long enough 
to include all expected sources of variation.
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POTENTIAL and ACTUAL CAPABILITY METRICS

 Potential Metrics (i.e., short-term Cp, and long-term Pp) consider only the standard deviation of 
the process. They have the same values regardless from process centering. They assume that 
centering a process is easier than reducing its variation.

Cp and Pp describe how good a process could potentially be if centered.

 Actual Metrics (i.e., short-term Cpk, and long-term Ppk) consider both the average and the 
standard deviation of the process. 

If a process is centered: Cpk = Cp and Ppk = Pp

If a process is off-target: Cpk < Cp and Ppk < Pp

Cpk and Ppk penalize processes that are off-target.
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Capability Index Performance Index

Type of indices Cp, Cpk Pp, Ppk

Data structuring in subgroups ungrouped

What it is measured?

Short-term variation Long-term variation

Within-group variation Variation across all data

What the process is capable of

at its best
How does the process perform 

over the long term
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Let’s now consider our initial process.

As expected, Cp > Cpk (in fact 2.74 > 2.48), but 
it deals of very high values anyway. The 
difference is due to the process which is not 
well centered on target.

Overall Capability Metrics: are based on all 
variation seen in the analysis and reflect the 
current performance of the process.

Potential Capability Metrics: are based on 
short variation and reflect how good the 
process could be.
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Let’s now consider our initial process.

As expected, Cp > Cpk (in fact 2.74 > 2.48), but it 
deals of very high values anyway. The difference is 
due to the process which is not well centered on 
target.

As PPM indicates the number of nonconforming 
parts in the process, expressed in parts per million, 
the Total PPM of Expected Overall Performance 
tells us that 1 lot on 1 million will be out of specs... 
but this is acceptable 
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Example 1

Here is an I Chart (or X Chart) displaying 
the assay values pertinent to an API 
manufacturing process collected in two 
subsequent years.

Let’s see quickly how a Capability 
Analysis can be set up and what it 
reveals.
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Example 1 (cont.)

The first step is to investigate how data is distributed: P-value > 0.05  Normal distribution 
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Example 1 (cont.)

Capability Analysis shows the overall process improvement resulting from spread reduction and centering.
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Example 2

Here is an I-MR Chart (or X-
MR Chart) displaying the 
average particle size values 
pertinent to an API collected 
in ten subsequent years.

The specification limit is :

d100 < 10 µm
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Example 2 (cont.)

The control chart indicates a 
process that is overall within 
the control limits but appears 
too rich in data points and 
difficult to read. The 
specification limit is missing. 
Let’s first add it!
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Example 2 (cont.)

Now it is much better at least 
as regards the «voice of the 
process» compared to the
«voice of the customer», but 
the graph is still difficult to 
read!

Let consider each year as a 
subgroup and use an Xbar-S 
Control Chart !
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Example 2 (cont.)

The control chart shows no 
variability outside the control 
limits calculated on the 
Average Standard Deviation 
and the whole process is well 
below the specification limit.

Let's now proceed with the 
Capability Analysis
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Example 2 (cont.)

Let’s first verify the normality of the 
data.

Data are not normally distributed !

What can be done? There are two 
possibilities:

1. transform the data by 
normalizing them 

2. evaluate the capability based on 
a Non-normal distribution
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Example 2 (cont.)

Transform the data by 
normalizing them 

* NOTE * 

In this case the specification limit or 
target for Average Particle Size (μm) 
outside range of transformation 
function.
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Example 2 (cont.)

Evaluate the capability 
based on a Non-normal 

distribution
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Example 2 (cont.)

And what would have 
happened if we had 
assumed the data as 
normally distributed?
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Summarizing :

 Capability Analysis allows to verify if a certain process, despite its variability, is able to respect 
the specified specification limits. 

 Once a process is in statistical control (remember there is no capability without stability !), 
the measure of quality (or metric) can be usefully expressed with the capability indices.

 The capability indices Cp and Cpk are dimensionless indices and therefore can be used to compare 
the capabilities of two processes with each other.

 The Cost of Poor Quality (COPQ) can be estimated from the ppm resulting from capability analysis.
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Process Capability Analysis is:

 performed on existing machines to assign them to the activities for which they are most suitable

 performed on new machines on the market to select them on the basis of a specific level of 
performance

 performed on new equipment as part of the qualification and approval process

 performed on existing processes to establish a baseline of current operations

 done periodically to monitor “wear and tear” on equipment and deterioration/drift of a process for 
whatever reason (material, personnel, environment, etc.)

M.L. George et al., The Lean Six Sigma Pocket Toolbook – McGraw-Hill (2005)
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CAPABILITY ANALYSIS

 Capability Indices are useful process metrics !

 Given their nature of  summary indices they have similarities with the classic summary 
indices of Descriptive Statistics (position, variability, shape)
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SYNOPTIC  TABLE
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If you want to…. Then you can use…
Visualize shape, central tendency, and dispersion of continuous data Histogram
Compare the central tendency and dispersion of various data sets Box plot
Set priorities in the order in which you want to deal with topics Pareto’s chart

Graph the relationship between two variables
Scatterplot or

Dispersion Diagram
Identify the presence of common and / or special causes in a process Control Chart
Look for patterns in data Run Chart
Understand about measures of central tendency, dispersion and shape of 
the data

Descriptive statistics

Evaluate the normality of the data Anderson-Darling’s normality test
Identify the variation caused by measuring process, measuring device and 
operators

Measurement Systems Analysis

Compare the variability associated with the process with the specification 
limits

Process Capability Analysis

Compare an average value to a single one (target) One-sample t-test
Compare the means of two data sets Two-sample t-test
Compare the means of more than two data sets ANOVA
Compare a median to a single value (target) One-sample sign test
Compare the medians of two data sets Two-sample Mann-Whitney test
Compare the medians of two or more data sets Kruskal-Wallis test
Compare the variances of two data sets F-test
Compare the variances of three or more data sets Bartlett test
Compare the variances of non-normal data Levene test
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If you want to…. Then you can use…

Evaluate the relationship between an independent variable (x) and a 
dependent variable (y)

Simple Linear Regression

Evaluate the relationship between two or more independent variables 
(x1, x2, x3, ...) and a dependent variable (y)

Multiple Linear Regression

Identify the input variables that impact the output variables Design of Experiment (DoE)

Identify sources of process variability for variable data (subgroup size = 
1)

IM-R Chart

Identify sources of process variability for variable data (subgroup 
dimensions: 2 to 6)

Xbar-R Chart

Identify sources of process variability for variable data (subgroup size: 
greater than 6)

Xbar-S Chart

Identify the sources of variability for "attributes“ data  as percentage 
defects

p Chart

Identify the sources of variability for "attributes" data as number of 
defects

np Chart

Identify the sources of variability for "attributes" data as number of 
defects per subgroup

c Chart

Identify the sources of variability for "attributes" data as number of 
defects per unit

u Chart
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CONCLUSIONS



Clearly, the purpose of everything seen so far is not the data 
itself, but the data as a means of reaching an informed and 
conscious decision not based on speculation or conjecture.
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FROM DATA TO AN INFORMED DECISION
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FROM DATA TO AN INFORMED DECISION

Data
From the representative sample
and the validated process/method

Knowledge
The results of multiple information
resources
Information
Processing the data using the
statistical  methods                       

Decision
Based on the knowledge
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STATISTICS  &  GMP

January 2011

FDA Guidance for Industry on Process Validation: 
General Principles and Practices
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STATISTICS  &  GMP

 The term “statistical” occurs 13 times !

 « Criteria and process performance indicators …. should include a description of the statistical 
methods to be used in analyzing all collected data (e.g., statistical metrics defining both intra-
batch and inter-batch variability) »

 « An ongoing program to collect and analyze product and process data that relate to product 
quality must be established (§ 211.180(e)) »

FDA Guidance for Industry – Process Validation: General Principles and Practices (January 2011)
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STATISTICS  &  GMP

 « The data should be statistically trended and reviewed by trained personnel. The information 
collected should verify that the quality attributes are being appropriately controlled throughout 
the process »

 « We recommend that a statistician or person with adequate training in statistical process 
control techniques develop the data collection plan and statistical methods and procedures used 
in measuring and evaluating process stability and process capability »

FDA Guidance for Industry – Process Validation: General Principles and Practices (January 2011)
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STATISTICS  &  GMP

 « Many tools and techniques, some statistical and others more qualitative, can be used to detect 
variation, characterize it, and determine the root cause. We recommend that the manufacturer 
use quantitative, statistical methods whenever appropriate and feasible. »

 « We recommend continued monitoring …. Monitoring can then be adjusted to a statistically 
appropriate and representative level. »

 « Capability of a process: Ability of a process to produce a product that will fulfill the 
requirements of that product. The concept of process capability can also be defined in statistical 
terms. »

FDA Guidance for Industry – Process Validation: General Principles and Practices (January 2011)
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STATISTICS  &  GMP

TEN YEARS LATER ….  July 2021

EMA Reflection paper on statistical methodology for the comparative 
assessment of quality attributes in drug development
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STATISTICS  &  GMP

 « This reflection paper identifies specific areas where the quantitative comparative evaluation of 
drug product quality characteristics plays an important role from the regulatory perspective »

 « The document focusses on methodological aspects in relation to statistical data comparison 
approaches for pre- and post-manufacturing changes »

 « The reflection paper … addresses questions related to comparison objectives, sampling 
strategies, sources of variability and options (or limitations) for statistical inference »

EMA Reflection paper on statistical methodology for the comparative assessment of quality attributes in drug development (July 2021)
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STATISTICS  &  GMP

 « the goal of this paper is to reflect under which circumstances, and to what extent, the 
implementation of inferential statistical methodology can assist or even facilitate comparative 
evaluation of QA data »

 etc.

The « heroic age » of the classic « average ± 3σ » diagram 
and similar old stuff are coming to an end !

We must be ready for new challenges ! We need new eyes !

EMA Reflection paper on statistical methodology for the comparative assessment of quality attributes in drug development (July 2021)
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Thank you for the attention !

http://riccardobonfichi.it

http://riccardobonfichi.it/
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