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Bootstrap using R: A useful approach for handling chunky data 

 

Even though measurement is the founda�on of all scien�fic and industrial processes, experimental 

data, precisely because it is derived from measurements, is inherently 'imperfect' as it is subject to 

various types of errors: random, systema�c, or merely trivial. 

The measurement “is the process of assigning numbers to represent quali�es” [1] and is 

accomplished using a “measurement system”, i.e., “a collec�on of instruments or gages, standards, 

opera�ons, methods, fixtures, so�ware, personnel, environment, and assump�ons used to quan�fy 

a unit of measure or fix assessment to the feature characteris�c being measured”.[2] 

Precisely from this defini�on it is evident that the measurement process and the measurement itself 

are influenced by many factors such as: 

 environment: external condi�ons such as: 

 temperature, 

 humidity,  
 vibra�ons, and 

 heat radia�on 

can affect the measurements. These environmental factors can introduce disturbances or distort 

the measured values. 

 object to measure: the characteris�cs of the object to be measured can significantly influence the 

 accuracy and precision of the measurement. Varia�ons in: 
 shape,  

 texture or  

 composi�on  

can  introduce inherent limita�ons to the measurement process. 

 method: the methodology chosen for the measurement, including the techniques employed and

 the procedures followed, can introduce variability in the measurement process. Factors such as: 

  sampling techniques, 

 data collec�on methods or  

 experimental setups 

contribute to the overall measurement uncertainty. 

 operator: the role of the operator is significant in measurements. Factors related to the operator 

such as: 

 training, 

 skill,  

 sense of apprecia�on for precision, 
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 a�tudes toward personal accuracy  

can introduce measurement varia�on and error. Different operators may interpret measurement 

protocols or instrument readings differently, leading to inconsistent results. 

 uncertainty on the measurement: every measurement inherently carries some level of 

 uncertainty. Uncertainty arises from various sources, such as: 

  instrument limita�ons, 

  sample varia�ons, or  

  errors in the measurement process itself.  

 Proper es�ma�on and uncertainty repor�ng are crucial for accurate data interpreta�on. 

 measuring instrument, and its calibra�on: the quality and calibra�on of the instruments used 

directly affect the accuracy and reliability of the measurements. Regular calibra�on procedures, 

adherence to instrument specifica�ons, and proper maintenance help keep measurement errors 

to a minimum. 

 etc. 

The number of digits with which they are reported also contributes significantly to the imperfec�on 
of the data and in this case, we speak of a rounding or trunca�on error. 

In this technical note, the focus is on an in-depth analysis of the so-called 'chunky data' and an 

explora�on of methods for their prac�cal u�liza�on, par�cularly in the context of data series 

comparison. 
Chunky data is a term coined by Dr. Wheeler [3] who has extensively studied this type of data and 

discussed it in numerous publica�ons [3-8]. The term chunky data is used to describe "measurements 

are made using measurement increments which are too large for the job" [4] and for which, 

therefore, "the distance between the possible values becomes too large [4]. 

Data of this type are frequently encountered in pharmaceu�cal QA / QC and are o�en the result of 

rounding off the experimental measurements [5]. 

The impact this has in greatly reducing variability within a data set is evident. For example, consider 

the following two sets of HPLC assay measurements below. Each series consists of three groups of 

measures which, in one case, are reported with a decimal figure while in the other they are rounded 

to the corresponding integer. 
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 Table 1 

Measurement Assay HPLC (%) Assay HPLC  
rounded values (%) 

1 100,0 100 
2 100,3 100 
3 99,7 100 
4 99,4 99 
5 99,5 100 
6 99,8 100 
1 100,3 100 
2 100,5 100 
3 100,6 100 
4 99,9 101 
5 99,4 100 
6 100,7 99 
1 100,8 101 
2 100,9 101 
3 100,3 101 
4 100,1 100 
5 99,7 100 
6 99,8 100 

 

The comparison of the histograms rela�ng to the two series of measures already shows at a glance 

the diversity exis�ng between the two data sets (Figure 1). In the second case, in fact, three bins are 
sufficient to collect the eighteen values while in the first seven are needed. 

 
Figure 1 

 
 

Furthermore, while the first set of data is normally distributed, the second does not pass the 

Anderson-Darling test of normality. This is clearly visible from the comparison of the probability plots 

rela�ng to the two distribu�ons (Figure 2). 
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Figure 2 

 
 

The presence of chunky data is par�cularly evident in probability plots. In fact, if present, they 

appear as groups of equal values stacked on top of each other as shown in the second probability 

plot. In the first case, however, thanks to the presence of the decimal figure, the variability of the 
data is maintained, and the values are distributed harmoniously along the straight line. 

The normality tests are based on the hypothesis that the data are taken from a con�nuous 

distribu�on, and it is therefore possible that they detect as "non-normal" distribu�ons with 
clustered values such as those resul�ng from the presence of chunky data. 

Again, from a graphical point of view, the presence of chunky data is par�cularly evident also from 

the so-called individual value plots. The one shown in Figure 3 clearly shows the structure of the 
data in the two cases. 

 
Figure 3 
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The effec�ve difference between the average values is greater than what can be obtained from the 

comparison of the two numerical values shown in Figure 3 as the whole value is rounded up. 

 

The presence of chunky data is also evident when using control charts. In fact, the following graphs 

illustrate how the I-MR charts rela�ng to the two series of values shown in Table 1 appear. As 

described in the literature [4] the presence of chunky data could be the cause of numerous false 

alarms if the values are close to the control limits. 

 
Figure 4 

 
 
 

The easiest way to eliminate the chunky data problem would be to repeat measurements using 

smaller measurement increments [4]. In many cases, however, this is impossible. Consider, for 

example, the comparison between two sets of data that must be used as they are. A typical example 
is that represented by the compara�ve comparison between supplier data and the corresponding 

ones measured in-house on a given incoming product. In this case, the non-normality of one of the 

two series can hinder the correct applica�on of tests such as the F-Test for Equality of Two Variances 
or the Two-Sample t-test which, in fact, require normality or quasi- normality of both datasets. 

When the data do not sa�sfy the assump�on of normality, several alterna�ves exist, including the 

use of nonparametric tests, such as the Mann-Whitney test to compare the means of the two 
groups, and the Levene test to verify homoskedas�city (equality of variances). 

An important and useful alterna�ve to nonparametric methods is represented by the bootstrap 

technique.  

Bootstrap methods were introduced in 1979 by Efron [8] and are a class of nonparametric Monte 

Carlo methods that es�mate the distribu�on of a popula�on by resampling. 
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In prac�ce bootstrapping is a sta�s�cal procedure that does not make any assump�ons about data 

distribu�on and resamples, over and over with replacement, a single dataset to create many 

simulated samples. The central assump�on for bootstrapping is that the original sample is 

representa�ve of the actual popula�on. It is therefore obvious that the larger the sample size, the 

beter the result. 

Let us consider, for example, precisely the case in which we want to evaluate whether there are 

significant differences between the average assay values and their dispersions, measured by the 

Supplier and obtained in-house by analyzing the incoming product. 

As we said ini�ally, the simplest approach in this case would be to compare the two data series using 

the Two-Sample t-test and the F-Test for Equality of Two Variances. 

For example, consider the case of the thirty values shown in Table 2 and which refer to the HPLC 

assay values of as many lots of a given raw material measured on the incoming product and reported 

on the accompanying Supplier's cer�ficate. 

 

Table 2 

    
 

Even a simple data visualiza�on, such as the one provided by the boxplots shown below, immediately 

returns the image of two quite different data distribu�ons, the first more symmetrical and dispersed, 

while the second is more asymmetrical and compact. 
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Figure 5 

 
 

Examina�on of the probability plots shows that the values measured in-house (and characterized by 

a decimal digit) appear normally distributed while those reported on the Supplier's cer�ficates (and 

without decimals) are not normally distributed and this due to chunky data. 
 

Figure 6 

 
 
Unfortunately, the requirement of normality, or at least near-normality, is essen�al for the correct 

applica�on of inferen�al tests such as: 

 2-Sample t-test: which allows you to check if the means of the two distribu�ons differ significantly 
 from each other or not, 

 F-Test for Equality of Two Variances: test for the null hypothesis that two normal popula�ons 

 have the same variance. 
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Now, in cases like these, the applica�on of the bootstrap technique proves to be par�cularly useful 

because it is a very powerful method that can be used to es�mate the distribu�on of the data sample 

and allows inferences to be made without having to make hard assump�ons about the distribu�on 

of the ini�al data. 

The most direct approach to comparing the two groups of data is certainly the one that uses the 

bootstrap to obtain confidence intervals for the difference between the means of the two groups, 

or for the difference between the variances, and then see if these intervals contain zero. 

In prac�ce the process would be as follows: 

 For each of the two ini�al datasets, many bootstrap samples (for example, 1000) are generated 

and the mean or variance is calculated for each of them. In this way, for each group, there is a 

distribu�on of means or variances. 

 For each pair of bootstrap means (or variances), the difference is calculated. This difference forms 

a new bootstrap distribu�on, which is the distribu�on of the difference between the bootstrap 

means (or variances) of the two groups. 

 Now we calculate a confidence interval for this distribu�on of differences. This confidence interval 

is an es�mate of where the "true" difference between the means (or variances) of the two groups 
is. 

 If the confidence interval contains zero, one cannot reject the null hypothesis that the means (or 

variances) of the two groups are equal. 

Thus, the confidence interval that you compute is a confidence interval for the difference between 
the means (or variances) of the bootstrap samples and serves as an es�mate for the difference 

between the means (or variances) of the original groups. 

An R script implemen�ng this approach could, for example, use the sample() func�on in R to 
generate the bootstrap samples, and then the mean() and var() func�ons to compute the means 

and variances. The R code here below can be downloaded from my repository on GitHub at 

htps://github.com/rbonfichi/bootstrap : 
 
# Read data: 
 
df <- read.csv2("C:/Users/Utente/Desktop/assay.csv") 
 
data1 <- df$assay_1 
data2 <- df$assay_2 
 
# Number of bootstraps 
n_bootstraps <- 1000 
 
# Length original data 
n <- nrow(df) 
  

https://github.com/rbonfichi/bootstrap/


Page 9 of 13 
 

 
# Initialize vectors to store bootstrap means and variances 
bootstrap_means_data1 <- numeric(n_bootstraps) 
bootstrap_means_data2 <- numeric(n_bootstraps) 
bootstrap_vars_data1 <- numeric(n_bootstraps) 
bootstrap_vars_data2 <- numeric(n_bootstraps) 
 
# Generate bootstrap samples and calculate means and variances 
for (i in 1:n_bootstraps) { 
  bootstrap_sample_data1 <- sample(data1, n, replace = TRUE) 
  bootstrap_sample_data2 <- sample(data2, n, replace = TRUE) 
   
  bootstrap_means_data1[i] <- mean(bootstrap_sample_data1) 
  bootstrap_means_data2[i] <- mean(bootstrap_sample_data2) 
   
  bootstrap_vars_data1[i] <- var(bootstrap_sample_data1) 
  bootstrap_vars_data2[i] <- var(bootstrap_sample_data2) 
} 
 
# Calculates the differences between the bootstrap means and variances 
mean_differences <- bootstrap_means_data1 - bootstrap_means_data2 
var_differences <- bootstrap_vars_data1 - bootstrap_vars_data2 
 
# Calculate 95% confidence intervals for differences 
mean_difference_ci <- quantile(mean_differences, c(0.025, 0.975)) 
var_difference_ci <- quantile(var_differences, c(0.025, 0.975)) 
 
# Print confidence intervals 
print(round(mean_difference_ci, digits =4)) 
print(round(var_difference_ci, digits = 4)) 
 

Basically, the above code: 

1. Reads a CSV file from the local disk containing the experimental data you want to compare, which 

 is stored in columns "assay_1" and "assay_2". 

2.  Set the number of bootstraps to 1000. 

3. Ini�alizes four vectors to store the bootstrap sample means and variances for each of the two 

 datasets. 

4. Generates bootstrap samples for each dataset and calculates means and variances for each 

 sample. 

5.  Calculates the difference between the bootstrap sample means and variances for each group. 
6.  Calculates 95% confidence intervals for the differences between the bootstrap sample means and 

 variances. 

7.  Prints the confidence intervals for the differences between the means and variances 
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Running this R script on the data listed in Table 2, the following output is generated: 
 
> print(round(mean_difference_ci, digits =4)) 

  2.5%  97.5%  

0.0232  1.0401  

> print(round(var_difference_ci, digits = 4)) 

  2.5%  97.5%  

0.4159  2.0665 

 

The results obtained indicate that the 95% confidence interval for the difference between the means 

of the two data sets ranges from 0.043 to 1.050. Since this interval does not contain zero, one can 

reject the null hypothesis that the means of the two groups are equal, sugges�ng that there is a 

sta�s�cally significant difference between the means of the two data groups. 

 
In addi�on, the 95% confidence interval for the difference between the variances of the two data 

sets ranges from 0.397 to 2.051. This interval also does not contain zero, which means that the null 

hypothesis that the variances of the two groups are equal can be rejected. This suggests that there 
is a sta�s�cally significant difference between the variances of the two data sets. 

In summary, based on the results of the bootstrap analysis, there appears to be a sta�s�cally 

significant difference between both the means and the variances of the two data groups.  
 

It is interes�ng to observe how, applying anyway the F-Test for Equality of Two Variances and the 

Two-Sample t-test to the ini�al data of Table 2, while the first unequivocally confirms the difference 

between the dispersions between the two data series, the Two -Sample t-test returns a result at 
least formally borderline. Indeed: 

 
Test and CI for Two Variances: in-house vs. supplierCoA 
 
Method 
σ₁: standard devia�on of in-house 
σ₂: standard devia�on of supplierCoA 
Ra�o: σ₁/σ₂ 
The Bonet and Levene's methods are valid for any con�nuous distribu�on. 

Descrip�ve Sta�s�cs 
Variable N StDev Variance 95% CI for σ 
in-house 30 1,296 1,680 (1,015; 1,770) 
supplierCoA 30 0,661 0,437 (0,530; 0,882) 
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Ra�o of Standard Devia�ons 
Es�mated 

Ra�o 
95% CI for Ra�o 

using Bonet 
95% CI for Ra�o 

using Levene 
1,96127 (1,317; 2,850) (1,146; 3,043) 

Test 
Null hypothesis H₀: σ₁ / σ₂ = 1 
Alterna�ve hypothesis H₁: σ₁ / σ₂ ≠ 1 
Significance level α = 0,05 

Method 
 

Test Sta�s�c DF1 DF2 P-Value 
Bonet 8,70 1  0,003 
Levene 6,37 1 58 0,014 

 
 

Figure 9 
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Two-Sample T-Test and CI: in-house vs. supplierCoA 
 
Method 
μ₁: popula�on mean of in-house 
µ₂: popula�on mean of supplierCoA 
Difference: μ₁ - µ₂ 
Equal variances are not assumed for this analysis. 

Descrip�ve Sta�s�cs 
Sample N Mean StDev SE Mean 
in-house 30 99,22 1,30 0,24 
supplierCoA 30 98,667 0,661 0,12 

Es�ma�on for Difference 

Difference 
95% CI for 
Difference 

0,556 (0,020; 1,092) 
Test 
Null hypothesis H₀: μ₁ - µ₂ = 0 
Alterna�ve hypothesis H₁: μ₁ - µ₂ ≠ 0 

T-Value DF P-Value 
2,09 43 0,042 

 
 
 
 
The study of chunky data and their peculiari�es has offered the opportunity to apply the 

bootstrapping technique which has proved to be very useful for managing a situa�on of comparison 
between two series of data, one of which was normally distributed and the other was not. 

Apart from the fact that, in the specific case, this difference was clearly due to the presence of 

chunky data, it occurs quite frequently in the prac�ce of comparing experimental data series in the 
Quality Control / Quality Assurance pharmaceu�cal field. In fact, it is enough to think of the 

comparison between series of "naturally limited" data, higher or lower (e.g., content of related 

substances), which are typically non-normal. Future studies could therefore focus on the applica�on 
of bootstrap techniques to such experimental datasets. As the field of data science con�nues to 

evolve, it is cri�cal to con�nually inves�gate and develop new methods for handling different types 

of data. 
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The case study addressed then highlighted the importance of defining repor�ng criteria for 

experimental data before they are generated. In fact, operator training in this regard can lead to 

more accurate data collec�on and thus improve the comparison and interpreta�on of experimental 

results. O�en, in fact, it is not possible to repeat the measurements once we have no�ced the 

problem. 

In conclusion, the domain of chunky data analysis, as already highlighted by Drs. Wheeler [3-7] and 

Sleeper [9] several years ago, has proved to be full of opportuni�es for innova�on and progress. 

Through con�nuous research and explora�on, we can develop more effec�ve strategies to handle 

complex data and leverage their unique characteris�cs to gain deeper insights into our data. 
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