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INTRODUCTION

Why we need STATISTICS?

FROM A VERY GENERAL STANDPOINT:

TO DISTINGUISH SIGNAL FROM NOISE !

STATISTICS ALLOWS INFORMATION TO BE SYNTHESIZED AND CONVERTED
INTO « READY-TO-USE » KNOWLEDGE

N. Silver, The Signal and the Noise: Why So Many Predictions Fail-but Some Don’t, Penguin Press (2012)




INTRODUCTION

What is STATISTICS ?

In general terms, close to the use we will make of it here, STATISTICS can be
defined as:

Set of logical and mathematical-probabilistic tools for the study of real
phenomena that occur with repeated determinations characterized by
variability




INTRODUCTION

STATISTICS can be sub-divided into two categories (DESCRIPTIVE, INFERENTIAL) which respond

more to the needs of schematization: in real applications there are no such clear boundaries.

= DESCRIPTIVE STATISTICS: data collection and analysis by means of graphs and summary

indices (position, variability and shape).

= |INFERENTIAL STATISTICS: set of methods that allow to generalize results based on a partial

observation (sample) : process in inductive inference !




DESCRIPTIVE STATISTICS
WITH EXCEL®




DESCRIPTIVE STATISTICS

QUALITATIVE DATA are represented using PIE CHARTS if no

order relationships can be established.

=C4/5C$13*100
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Type of defect tablets Number of defects Percentage of defects
Weight variation 5 @:
Friability 6 6
Hardness 7 7
Sticking 10 10
Picking 15 14
Capping 17 16
Laminating 20 19
Chipping 25 24
Sum 105 100
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DESCRIPTIVE STATISTICS

QUALITATIVE DATA are represented using BAR CHARTS if an order relationship can be established.
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DESCRIPTIVE STATISTICS
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DESCRIPTIVE STATISTICS

DISCRETE QUANTITATIVE DATA are represented using INDIVIDUAL VALUE PLOTS.
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DESCRIPTIVE STATISTICS
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DESCR I PTIVE STATISTICS Histogram of Assay values (5 bins)
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CONTINUOUS QUANTITATIVE DATA are represented using HISTOGRAMS

=
"]

=
=]

which are useful not only to understand the distribution of values
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DESCRIPTIVE STATISTICS
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DESCRIPTIVE STATISTICS Assay values
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DESCRIPTIVE STATISTICS

CONTINUOUS QUANTITATIVE DATA can also be effectively represented even using

Assay value (%)
86,6
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DESCRIPTIVE STATISTICS

O = Qutlier
15t Quartile, Q1: 25% of the data < this value

Median, Q2. 50% of the data < this value
34 Quartile, Q3: 75% of the data < this value

A Maximum

Interquartile range: 50% of the data

Whiskers: extend to the minimum / maximum
date point within 1.5 IQR from the
bottom / top of the box

<= 31 Quartile

Outlier : observation beyond upper or lower 4= Median

whisker, i.e., over 1.5I1QR

Interquartile Range

4= 1% Quartile

dp— Minimum

J.W. Tukey, Exploratory Data Analysis, Addison Wesley, 1977




DESCRIPTIVE STATISTICS

WHAT DOES A BOXPLOT TELL US AT A GLANCE?

= |f it looks «compact» : most of the data are like each other since there are so many values in a

narrow range

= |f it looks «stretched» : most of the data are quite different from each other, as the

values spread over a wide range
= |f the median is close to the bottom: most of the data will have the lower range values
= |f the median is close to the top: most of the data will have the higher values of the range

= |f the median is not in the center data distribution will be « tailed »




DESCRIPTIVE STATISTICS

Previous types of plots are useful for multiple data sets comparisons such as, for instance:

. . Boxplot of pH measurements
Individual Value Plot of pH measurements os
98
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DESCRIPTIVE STATISTICS

Operator 1 Operator 2 Operator 3
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DESCRIPTIVE STATISTICS

TIME SERIES is a sequence of data points listed (or graphed) in time order. This type of graphs

are also known as Line Graphs.
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DESCRIPTIVE STATISTICS

Please, duly consider the following quote:

« ...TIME SERIES PLOTS and HISTOGRAMS can be thought as COMPLEMENTARY TO EACH OTHER.
While the histogram collapses all the data, showing its overall shape, the time series
plot stretches out the data showing the sequential information that is obscured by the

histogram. »

D.J. Wheeler, D.S. Chambers, Understanding Statistical Process Control, 2" Ed., SPC Press, USA, 1992




DESCRIPTIVE STATISTICS

PARETO CHART allows you to sort the causes of defects in a process according to their relative

importance.
Type of defect

Weight variation
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Sticking
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DESCRIPTIVE STATISTICS

To show mean values with margins of error: interval plot.
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DESCRIPTIVE STATISTICS

RECOMMENDATION

When conducting data studies, never forget to contextualize them (e.g., report specification limits)

Interval Plot of mean pH values forLots 1 -7
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DESCRIPTIVE STATISTICS

= all examples until now refer to one variable

* in case of two continuous variables: Scatterplot of Weight (Kg) vs. Height (m)
90,00
scatterplot 50,00 .
. %
= the scatterplot here on the side shows an 5 o« T . .
. . . . — 60,00 o
approximately linear relationship between £ o . ® : %o oge °
. . , , ® 50, 2
height and weight, but it does not giveany | =, - Jg ks,
o . . . ' % ® .
guantitative measure of this relationship ! 30,00 e o ®e o
= Correlation only measures the strength and 20’001,30 135 140 145 150 155 160 165 170
the direction of association between two Height (m)

variables.




DESCRIPTIVE Y1vs.X1 Y2 vs. X2
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F.J. Anscombe, Graphs in Statistical Analysis, American Statistician, Vol. 27, No. 1 (1973)




DESCRIPTIVE STATISTICS

With the term summary indices, or statistics we mean, in practice, numerical indicators that are

functions of data. They are of three types:

= POsITION INDICES: indicators that give an idea of distribution’s central tendency. They are of two types:
* non-analytical (median, mode, percentiles) and

 analytical (analytical means)
= VARIABILITY INDICES: indicators of the diversity / multiplicity of the values of a given variable.

= SHAPE INDICES: indicators of the shape of a data distribution




DESCRIPTIVE STATISTICS

MODE : the value that appears most often in a data set, =MODE.SNGL() and =MODE.MULT()

Line Plot of a Zero Modal Data Distribution

Line Plot of an Unimodal Data Distribution

Line Plot of a Bimodal Data Distribution
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DESCRIPTIVE STATISTICS

MobDE (cont.):

Frequency

Histogram of a Zero Modal Data Distribution

29 III
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Data
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Histogram of an Unimodal Data Distribution
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A golden rule: use multiple data visualization tools!




Boxplot of a Zero Modal Data Distribution
250
DESCRIPTIVE STATISTICS
200 198
MEDIAN : the middle point in a dataset, =MEDIAN() “ o
§ 100
=
Boxplot of an Unimodal Data Distribution 50
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DESCRIPTIVE STATISTICS

= The ALGEBRAIC (Or ANALYTICAL) MEANS are generally defined by the formula:

k 1/7'

1
pho= sz{ni

i=1
That for r=1 becomes the well-known ARITHMETIC MEAN:

k
)
'u_n Xi 1
i=1

e.g.: given: 3,5, 10 the arithmetic meanis: u = % (3x1+4+5%x1+10x1) = % (18) =6




DESCRIPTIVE STATISTICS

ARITHMETIC MEAN: the middle point in a dataset, =AVERAGE()

mean =100 s.d. =
0.5
100,427
99,992
99,673
100,267
100,459
100,518
100,747
101,116
100,435
100,560
100,038
99,527
100,698
99,966
100,485

Mean 100,327

mean =100 s.d.=
2
100,776
99,649
99,228
96,328
101,338
101,583
101,418
101,269
99,972
100,431
97,927
99,010
98,280
101,136
103,159

100,100

Assayvalue (%)

Comparison betwee two data distribution of same mean (i.e., 100%)

104,0

102,0 -

100,0 -

—

B mean=100s.d.=0.5

B mean=100s.d.=2

92,0

Position Indices alone are insufficient to fully describe a given distribution of data!




DESCRIPTIVE STATISTICS

The previous slides have actually introduced the need for a second type of summary

indexes, namely:

VARIABILITY INDICES

whose purpose is to measure variability!

A common feature of the variability indices is that of being zero in the absence

of variability and growing in value as the variability increases!




DESCRIPTIVE STATISTICS

The most widely used « dispersion indices with respect to a center » (i.e., the arithmetic

mean) are:

* Range
 Variance
 Standard Deviation

* Coefficient of Variation




DESCRIPTIVE STATISTICS

® Range — Itis the simplest dispersion index.
— Itis equal to the maximum value minus the minimum value.

Range = Maximum age — Minimum age=57-27=30




DESCRIPTIVE STATISTICS

® Standard Deviation — measures the degree of dispersion of a dataset
relative to the arithmetic mean.

> (X, - X

n—1

§ =

where: “n” is the number of elements forming the dataset
“X;” is the value of each observation in the dataset

“X” is the mean value of all observations forming the dataset

® The standard deviation has the same units of measurement as the variable
under study !




DESCRIPTIVE STATISTICS

® Standard Deviation




DESCRIPTIVE STATISTICS

® While s refers to the sample, o refers to the population.

7i’l=1(Xi B X)z ?=1(Xi B X)Z
\ n —1 \ n

® The reason for the difference between the two denominators is simply that if
you divided by n, the standard deviation (or variance) of the sample would
underestimate the standard deviation (or variance) of the population. That is, it
would be a « distorted statistic ».




DESCRIPTIVE STATISTICS

@ Variance —is the square of standard deviation.

n(X - %)
n —1

Where “n” is the number of the samples.
“X.” is the value of each observation.

“X” is the mean value of all the samples.




DESCRIPTIVE STATISTICS

Range Calculation Sample Standard Deviation Calculation
B2 v X «/ Jfx =STDEV.S(B2:B6)
A B
dividual A R D E F G H | J K
Individua Age 1 Individual Age . ‘ ‘ ‘ ‘ ' ‘ ‘
. | Function Arguments ? X

Young trainee 27 2 Young trainee 27 7

Young Student 27 3 Young student 27 [ STDEV.S

Medical doctor 35 4 |Medical doctor 33 , Number1 ‘ B2:B4 0 ‘ = (27:27:33:46,57)

] 5 |Business woman 46

Business woman 46 6 Cook 57 Number2 \ () \ = number

Cook 57 7
8 }Sample Standard Deviation B2:B6) ‘l
9

Max 57 10
Min 27 11 = 13,15294644

Ra nge = MaX—Min 12 Estimates standard deviation based on a sample (ignores logical values and text in the sample).
13
14 Number1: numberl;number2;... are 1to 255 numbers corresponding to a sample of a
15 population and can be numbers or references that contain numbers.
16
17 Formula result = 13,15294644
18
19 Help on this function Cancel
20 p I I I 4
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Sample Variance Calculation

B2 v i X < fx =VAR.S(B2:B6)
A B | C D E F G H J K L
L Individual Age | Function Arguments ? X
2 Young trainee 27 7
3 Young student 27 - VARS
4 Medical doctor 33 , Number1 B2B6 P = (727334657
5 |Business woman 46 ~
6 Cook 57 Number2 T | = number
7
8 }Sample Variance calculation |:B6) |
9
10
11 = 173
12 Estimates variance based on a sample (ignores logical values and text in the sample).
13
14 Number1: numberl;number2;... are 1to 255 numeric arguments corresponding to a sample of
a population.
15
16
17 Formula result = 173
18
19 Help on this function Cancel
20 A \ \ \ | \ \ | \ \ Y




DESCRIPTIVE STATISTICS

The variance, unlike the standard deviation, has the property of additivity. This means
that if the elementary data form subgroups, then the total variance can be obtained as

the sum of the variance "within groups" and the "variance between groups":

2 __ 2 2
0" = O-Within + O Between

This « variance decomposition theorem » is the basis of the so-called

Analysis of Variance or ANOVA




DESCRIPTIVE STATISTICS

> The « between variance », 6%4¢en » OF « Variance of group means », measures

how different the group means are from each other.

» The « within variance », aﬁ,ithin , Or « mean of group variances », provides a

summary of the level of variability present within each data group.

» In applying these criteria to regression analysis using the Least Squares Method,

the 05,ppeen is Called the explained variance while the 67;,p:,, is called the
residual variance.




DESCRIPTIVE STATISTICS

Example: Let's consider the four Boxplots of four series of pH values
series of pH values below which, at 5,50
first glance, look quite similar ... 5,40 S—

What can we say? 5,30 p—

pH1 pH2 pH3 pH4
5,12 5,02 5,27 5,42
4,94 5,17 5,29 5,42 >,00
5,18 5,11 5,30 5,42 4,90
5,04 4,91 5,31 5,39
5,15 4,99 5,30 5,42

pHvalue (pH units)
5
-I\.-"
o

B pH1 [ pH2 [0 pH3 | pH4




DESCRIPTIVE STATISTICS

Using the “Data Analysis” tool shown here below running ANOVA One-Way is very simple.
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Get [é From\ieh [(% RECELSOHIGES Refresh [] Qﬁi c @ : Zl Sort Filter ? %(tto @ Dg What:If Forecast 4H Ungroup v = S Daita Aalysis G
Data > B3 From Table/Range [’f\j Existing Connections All~ [b‘ oce Hrendes = 2 EAdvanced Columns 55 v @ Analysis v Sheet Eﬁ Subtotal
Get & Transform Data Queries & Connections Data Types Sort & Filter Data Tools Forecast Outline N Analysis B
 Data Analysis ; X
. . o o ) = il 1
= Clicking on “Data Analysis” is Slelpeit Tk ‘ ok ‘
Bl Anova: Single Factor
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. (( [ ” . .
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Let’s see ANOVA One-Way (or One factor) results:

Groups Count Sum Mean Variance
pH1 5 25,43 509 0,0087
pH2 5 25,19 5,04 0,0101
pH3 5 26,48 5,30 0,0002
pH4 5 27,07 541 0,0001
ANOVA
Source of variation Sum of dof . F calculated Significance F
Squares Squares value tabulated
Between groups 0,4690 3 0,1563 32,5928 0,0000 3,2389
Within groups 0,0767 16 0,0048

Total 0,5458 19
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What does ANOVA One-Way tell us?

» The means of squares (or variances) are greater between data groups than within them.
In other words:

variability (measured by the deviation from the mean) is higher between groups
than within them!

F calculated > F tabulated : average values of the data groups are significantly different
from each other

Consider that this result is what is normally obtained by comparing series of
data, such as happens for example for APQR.
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ANOVA possible applications?

Comparison of multiple data series such as:

Yields of different lots obtained using the same process or different processes
= Assay values of lots listed in an Annual Product Quality Review
= Impact of different catalyst on chemical reaction rates

= Impact of fertilizer type, planting density and planting location in the field on final
crop yield

= etc.
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A very important and useful index of variability is the Coefficient of Variation which is defined

as:

o o
CV =RSD = ; or CV% = RSD% = ;xlOO

The usefulness of this index derives from the fact that it allows you to compare the variability
of two different distributions of data!

This characteristic is very important if you think about how often the problem arises of
comparing, for example, the variability in the yields of two processes (or of the same process
but conducted in different conditions / places) or the variability of two machines, etc.
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Let’s consider, for example, the four series of pH values we have just examined using ANOVA.
CV% can be easily calculated from ANOVA’s SUMMARY adding two columns: Standard Deviation

and CV% as follows:

Standard Deviation values can be obtained from CV% values can be calculated using the corresponding
corresponding Variance values just using Standard Deviation and Mean values.
function: SQRT(Variance)

Anova: Single Factor \ \
SUMMARY

Groups Count Sum Mean Variance Standard Deviation Cv%
pH1 5 25,43 5,09 0,0087 0,0934 1,84
pH2 5 25,19 5,04 0,0101 0,1006 2,00
pH3 5 26,48 5,30 0,0002 0,0146 0,28
pH4 5 27,07 5,41 0,0001 0,0118 0,22

CV% values reflect boxplots of slide 45 !
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The third type of indices are the:
SHAPE INDICES

= |n general terms it can be said that if the Averages give an idea of the order of
magnitude of the data series, the Variability Indices measure the difference between

the values and the Shape Indices describe the distancing of the data distribution from

the symmetrical form (or bell).
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= FISHER or SKEWNESS ASYMMETRY INDEX: it is a shape index that allows to evaluate the
degree of deviation of a distribution with respect to a perfectly symmetrical trend.

0-3

N Z(xl — u)?’nl}

if Y1 > 0 : positive asymmetry or right tail ( Mode < Median < Mean )
if Y1 < 0 : negative asymmetry or left tail ( Mean < Median < Mode )

if y; = 0 :it's just a symptom of symmetry ( Mean = Median = Mode )




DESCRIPTIVE STATISTICS

= KURTOSIS: is a shape index that allows you to evaluate the degree of flattening
of a distribution around its central value.

leptokurtic

0-4-

mesokurtic

N Z('xl - ﬂ)4 nl:|
platykurtic
if y, > 3 : leptokurtic curve (pointed)

if Y, =3 : mesokurtic or normokurtic curve (or Gaussian)

if y, < 3 : platikurtic curve (flattened)
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For Shape Indices Excel® provides specific functions, SKEW() and KURT(), or,
alternatively, you can use the Data Analysis Tool:

' Data Analysis ? X

Analysis Tools ‘

OK ‘

Anova: Two-Factor With Replication
Anova: Two-Factor Without Replication Cancel
Correlation
Covariance
— Help
Exponential Smoothing

F-Test Two-Sample for Variances
Fourier Analysis

Histogram

Moving Average
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Paste B I U+ @die v Av === =55 EHwm &C v = v O «0 .00  Conditional Formatas ¢
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= |s that part of the Statistics that aims to make operational decisions and choices based

on limited and provisional information.

" |t can be summarized as : FROM FEW TO ALL and is based on a process known as:

INFERENCE

i.e., the process of reaching a conclusion from a given set of statements (or premises)

= This process can be of two types: deductive and inductive
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= Example 1: Deductive Argument (from general to the particular)
Premises: Socrates is a man
All men are mortal
Conclusion: Socrates is mortal VALID ARGUMENT
= Example 2: Inductive Argument (from particular to the general)
Premises: Last September was the rainiest on record

John’s birthday is in September
Conclusion: It rained on John’s last birthday = PLAUSIBLE ARGUMENT

The basic problem in inductive inference is
to devise ways of measuring the strength of an inductive argument!




INFERENTIAL STATISTICS

= To achieve this goal, Inferential Statistical makes use of two methodologies :

Parameter Estimation and

Hypothesis Testing
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To do this work, some concepts are needed the most important of which is that of

Probability and Probability Distribution

WHY?

Simple ! Probability distributions, especially the "parametric" ones, are mathematical

laws that represent real « reference models ».

Once demonstrated that one of them can adequately describe the behavior of the
data under analysis, it becomes immediate to make extrapolations with respect to

such data.
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According to the its classical definition (Laplace), Probability can be calculated dividing
the number of successful times (or ways) an event occurs by the total number of
possible outcomes if each outcome is equally likely.

Number of ways E can successfully occur
Total number of possible outcomes of the experiment

P(E) = (1)

The term event identifies any possible outcome of an experiment.
An event can be simple if it consists of just one outcome (e.g., tossing a coin or a dice)

or compound if it contains more than one outcome (e.g., tossing a coin and a dice).
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The probability value is therefore a number between 0 and 1.

= The value O indicates an impossible event while the value 1 indicates a certain
event.

* Rolling a dice, the probability that the number "4" will come out is 1/6 since
there are 6 possible events (as many as there are faces of the die) and the
favorable event is only one.
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Let’s consider, for example, a few types of defects that could occur in glass vials:

Defect type

Fracture that penetrates completely
through the glass wall.

Crack

General
Bead or string of glass that is adhered

to the interior surface.

A finish that has actual pieces of glass
broken out of it

A container that has separated into
two pieces

Critical Spiticule

Finish Broken Finish
Body Ring off

The finish of the container is distorted
to the extent that the plane of the
seal surface is not perpendicular to
axis of the body

Finish Bent neck

A discontinuity in the glass surface
Check that does not penetrate through the
glass wall
Container with a section or fragment
Chipped broken out (other than sealing
surface)

Stirele Crizzle A finish or neck that has several fine

- surface marks -

General
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and assume that in a 1000000 clear glass vials batch, 30000 are flawed because of
cracks, 10000 are flawed because of spiticules, 20000 are flawed because of bent
neck and 40000 are yellow colored.
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Let assume, for simplicity, that these defects are mutually exclusive and that the

probability of observing any one of these events for a single vial is:

Possibl
Casual variable OssIbe Probability
Outcomes
Crack 0.03
Spiticule 0.01
Glass vial defect
Bent neck 0.02
Yellow color 0.04
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The probability of choosing at random an unacceptable vial (i.e., cracked, spiticuled,
bent necked or yellow colored) is: 0.03+0.01+0.02+0.04 = 0.10 or 10%

Consequently, the probability of choosing at random an acceptable vial is:
1-0.10=0.90 or 90%

The four outcomes listed in the table and their associate probability values form a

sample probability distribution which can be graphically represented as:




INFERENTIAL STATISTICS

& B E F G H
1
2 Possible Outcomes Probability . . L .
. 0.03 A Discrete Probability Distribution
4 Spiticule 0,01 0,05
5 |Bent neck 0,02 0,04
6 Yellow color 0,04 0,04
74 - 0,03
8 £ 0,03
e

9 3 0,02
10 ELQ 0,02
11 0,01

0,01
12 | .
13 5
14 Crack Spiticule Bent neck Yellow color
15 Possible outcomes (defects)
16
17
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m  Adistribution (or probability distribution) is a set of values of a variable (in this case:

glass vials defects), along with the associated probability of each value of the variable.

m  Distributions are usually visualized plotting the variable on the x-axis and the probability

on the y-axis

® |n the example in the previous slide the distribution is discrete, i.e., it can assume a finite

number of values.

®m |f, on the other hand, a random variable takes on all the values belonging to an interval

(a, b) then it is called continuous.
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Poisson Distribution plot - mean = 3 Normal Distribution plot - mean=3; sd=1
0,25 0,45
0,40
0,20 0,35
-~ - 0,30
% 0,15 E 0,25
3 3 0,20
e 0,10 o 0

a & 0,15
0,05 0,10
I I 0,05
0,00 1 " - 0,00

0 1 2 3 4 5 6 7 8 9 10 11 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

X X
Poisson Distribution Normal Distribution
Discrete data and Discrete probability curve Continuous data and Continuous probability curve
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B |n general, distributions can be numerically described using three categories of

parameters:
e central tendency (e.g., mean)

e variation /spread (e.q., variance, standard deviation)

e shape (e.qg., skewness)

®m  The mathematical function that associates a probability value to each value
assumed by the variable is called the probability function (Discrete Distribution)

or probability density function (Continuous Distribution).
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The most important probability distributions belonging to these two categories are:

e Binomial and Poisson . discrete
e Normal (or Gaussian) : continuous
e Student’s t-distribution : continuous

Let’s start with Poisson’s Distribution
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Introduced by Siméon Denis Poisson in a book he wrote regarding the application of
probability theory to lawsuits (1837), it applies in diverse areas as:

number of misprints on a page (or number of pages) in a book,
number of people in a community living 100 years of age,
number of wrong phone numbers dialed in a day,

number of equipment failures in a given time period, etc.

Poisson’s Distribution is known as the « distribution of rare events »

S.M. Ross, A first course in probability — 9t Edition, Pearson College (2012)
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Beyond all these apparently abstract aspects, the Poisson Distribution represents a
useful model for various phenomena in the pharmaceutical field such as, for

example:
® Black particles in tablets or vials
® Microbial counts
m Acceptance sampling plans by attributes

B etc.
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Another area of application of the Poisson distribution is, for example, in the
Acceptance Statistic Sampling.
Here is an example of construction of the Characteristic Operating Curve in the
Poissonian case:

N=100 n=10 c=2

e~ 10P x (10p)*
x!

P (x) = ZDZC=O

X 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Pa(x) 1 0.9197 0.6767 0.4232 0.2381 0.1247 0.0620 0.0296 0.0138 0.0062




INFERENTIAL STATISTICS

OC curve (poissonian scheme) with n=10, c= 2

1.0

0.8

0.4

Probability of acceptance P(x)

0.2

0.0

0.05 015 0.25 0.35 0.45 0.55 0.65 0.75 0.85
Fraction of non-conforming units
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** The Normal Curve is due to the French mathematician Abraham De Moivre who mentioned it in
a paper published on November 12, 1733.

¢ The statistical use of the normal distribution began with Laplace and Gauss (distribution of
errors) and Quételet made large use of it in Social Statistics (the average man theory: the
individual person was synonymous with error, while the average person represented the true
human being).

¢ This distribution was first called normal distribution by Sir Francis Galton in his lecture on
Typical Laws of Heredity held at the Royal Institution on February 9, 1877.

+** In the pharmaceutical field it occurs quite often. A typical example is shown in the next slide.
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Very similar to the Normal, and very useful, is the Student t-distribution or t-distribution.

Distribution plot: Normal vs. t (dof=3) Distribution plot: Normal vs. t (dof=14)

0,45 0,45

0,40 0,40

0,35 0,35

0,30 0,30

0,25 0,25

0,20 0,20

0,15 0,15

0,10 0,10

0,05 0,05

0,00 0,00

BN K S K T G AR SR S I P S BN S AN P T X S S SR I S R I S S

— t-distribution dof=3 Normal mean=0sd=1 s T-clistribution dof=3 Normal mean=0sd=1
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Normal Distribution vs. Student’s t-Distribution

Normal (aka Gaussian) Student’s
distribution t-distribution

Type of distribution continuous

bell-shaped, symmetrical,
the tails approach the horizontal axis but never touch it

Mean = Median = Mode Yes

o (x— u) t = )
Test statistic = S
a (7
No Yes
Population or process Population or process
Standard Deviation is known Standard Deviation is
To be used when o ARG @

Sample Size > 30 Sample Size < 30
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What is the practical use of all this?

Let see a practical example !
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Let’s consider, for example, the 10
year data of a critical parameter (a
reaction critical temperature) whose
value must be between 85 °C and
95 °C otherwise the process leads

to the formation of unwanted

impurities.

‘ Real Experimental Data

Frequency

Histogram of Temperature
45
40
35
30

25
20
1
-- N

[85,86] (86,87] (87,89] (89,90] (90,91] (91,92] (92,93] (93,95] (95, 96]

o un

Temperature (°C)
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Experimental data can be approximated using a Normal random variable X (the critical temperature)

characterized by:

x=90,03°C s =194°C

Mathematical Model

Temperature: Descriptive Statistics

Mean 90,03
Standard Error 0,15
Median 90
Mode 89
Standard Deviation 1,94
Sample Variance 3,77
Kurtosis -0,24
Skewness 0,02
Range 10
Minimum 85
Maximum a5
Sum 1513585
Count 168

Density

0,20

0,15

0,10

0,05

0,00

Normal: mean =90.03 °C sd =1.94 °C

T B, ™" 0 © 1 b9 " O 6 1 D H O o0 1V b " O

%&\ Cbbu qu)\ CbCQ\ Cbb\ q;\\ q;\\ q;b\ %Q\ cb(b\ q()\ QQ‘ q'\,\ Q’L\ CSL‘ q’b\ q’b\ Qb“ q(,)\

Temperature (°C)

—00 <x < 00

The area under the curve
equals 1 or 100%
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What is the probability that P (X <85 °Cand X>95°C)?

or, in other words, what is the probability that the critical temperature exceeds the foreseen limits ?

P ()( e 95_0) = 0,9948 ~/ fx =NORM.DIST(95;90,03;1,94;TRUE)
P(X<85.0)= 0,0048

“ fx  =NORM.DIST(85;90,03;1,94;TRUE)

P(85.0 < X < 95.0) = 0,9900

The NORM.DIST function returns the normal distribution for the specified mean and standard
deviation. If TRUE, it returns the cumulative distribution function; if FALSE, it returns the
probability density function.
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What does this mean in practice?

There is about 1% probability that the critical reaction

parameter exceeds the specification limits!
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What does this mean in practice?

\/

** Based on these data there is about 1% probability that the critical
reaction parameter could exceed the limits

\/

»* 0OS results may be observed !
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= This can be considered a simple example of

Science based QA

since:
= The conformance (or criticality as in this case) to specifications can be demonstrated

= Any future actions can be taken correctly

Better Science = Better Outcomes = Less Costs
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WARNING !

What we have just seen is none other than what,

in the end, the Capability Analysis returns!
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Let’s now go back to the

Normal Distribution and its characteristics !
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Normal Distributions that can be generated by varying mean (1 ) and standard deviation (o ) are infinite !

0,45 1,32
0,40

1,12
0,35
0,30 0,92
0,25 0,72
0,20

0,52
0,15
0,10 0,32

000 — ) N

pf-.’ 9,?) :1;"" g::‘ n:’ ;\:? g?’ g::’ Qﬁ’ gﬁa :\:? q,} q::‘ o;:’ o,? 'b.(? 6;\» oY ,b&?‘ %1 o;‘\’ ﬁf? 5\,9 :\,?‘ /Q%’ /r\\’ s \,\Q ,\:‘o ,.\:Jr q:\t’ a,?‘ D(\Q \>5~°

Q

Normal mean=0sd=1

Normal mean=-1 sd=1

Normal mean=-2 sd=1

Normal mean=0 sd=0,3 Normal mean=0 sd=0,5

Normal mean=1sd=1 Normal mean=2 sd=1 Normal mean=0 sd=1 Normal mean=0 sd=2
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To simplify : Standard Normal Distribution: mean=0,sd =1
STANDARDIZATION zzz
0,30
In other words: X — > 025
/) = —— £ 0,20
o 2 015
The Standardized Normal zs}:
Distribution is characterized by: D'DU
= 2 -4,0 -3,0 2,0 -1,0 0,0 1,0 2,0 3,0 4,0
Z =0 o; =1 Z

S.M. Ross, A first course in probability— 9th Edition, Pearson College (2012)
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&

L)

L)

* The z transformation allows to transform any Normal Distribution into the Standard Normal
Distribution.

4

L)

L)

» The values of the Z test statistic are plotted along the horizontal axis and correspond to
standard deviations.

4

L)

» As an exercise, let's try to calculate the probability values between +1 and -1 or between +2
and -2 or between +3 and -3 using the Excel function:

L)

NORM.S.DIST

which returns the standard normal distribution. If TRUE, NORM.S.DIST returns the
cumulative distribution function; if FALSE, it returns the probability mass function.
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> P(-1<Z<+1)==NORM.S.DIST(1;TRUE) - NORM.S.DIST(-1;TRUE) = 0,682689492 =) -~ 68,27%
> P(-2<Z<+2)==NORM.S.DIST(2;TRUE) - NORM.S.DIST(-2;TRUE) = 0,954499736 mmm) ~ 95,45%

> P (-3 <Z<+3)==NORM.S.DIST(3;TRUE) - NORM.S.DIST(-3; TRUE) = 0,997300204 =) ~ 99,73%

Standard Normal Distribution: Mean=0 sd=1

4,0 -3,0 2,0 -1,0 0,0 1,0 2,0 3,0 4,0
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HOWEVER, ALWAYS REMEMBER THAT:

B /n all cases, these are mathematical models with respect to which the

distributions of real data are compared.

B the use of these models is convenient only because, by dealing with mathematical
functions, the theory provides simple formulas for the calculation of practical

parameters such as those just seen.
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How can we practically and easily determine whether a given probability distribution is

a reasonable model for the experimental data?
PROBABILITY PLOT or QQ-Plot

» It deals of graphical methods that are used to compare the distribution of a set of

experimental data with a theoretical reference distribution, usually the Normal.

» If you want to statistically verify that the data follow a certain distribution, you have

to use specific tests such as those of Kolmogorov-Smirnov or Anderson-Darling.
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What are Quantiles ?
» A quantile is a value that divides a dataset into equal-sized groups.
» If you divide a dataset into four equal parts, each part is called a quartile.

» The first quartile (Q1) represents the 25% percentile, the second quartile (Q2)
represents the 50t percentile (which is also the median), and the third quartile

(Q3) represents the 75 percentile. These quartiles are examples of quantiles.
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The idea of a QQ-plot is straightforward: we want to form a scatterplot that relates our

data values to the ideal values of the theoretical distribution.

How it works ? Simple:
e Data values are first arranged in increasing order

* For each data value x;, we use the data to estimate the probability p; that a random

value in the distribution we are sampling from is less than x;

* Finally, the ideal values, or theoretical quantiles, q;, are chosen from our
comparison distribution. That is, x; is the same quantile in the data as in the

comparison distribution (e.g., Normal).
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v fx| =(E3-0,5)/15 %~/ Jx  =NORM.INV(F3;$D$19;$D$20)

Raw Data Sorted data, Ranking Probability,] Normal quantiles,
xi Pi q,' QQ'P’Ot
18,7 4,0 1 [ 003 | 25,0
12,0 5,6 2 0,10 5,4984
7,8 7,8 3 0,17 7,2489 °
7,9 7,9 4 0,23 8,5836 20,0 y=0,9684x +0,3994 .
20,5 9,0 5 0,30 9,7177 _ R=0ps27
5,6 9,3 6 0,37 10,7414 15,0
20,1 10,4 7 0,43 11,7044 B
9,0 12,0 8 0,50 12,6400 b
9,3 13,4 9 0,57 13,5756 § 10,0
10,4 14,4 10 0,63 14,5386
4,0 15,6 11 0,70 15,5623 50
15,6 18,7 12 0,77 16,6964
20,9 20,1 13 0,83 18,0311
14,4 20,5 14 0,90 19,7816 0,0
134 20,9 15 0,97 22,8597 0,0000 5,0000 10,0000 15,0000 20,0000 25,0000
Normal quantiles, gi
Mean = 12,6

Std Dev = 5,5726
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Boxplot Raw Data
The fact that the data appear 2>0

almost normally distributed is . 20,9

also indicated by the boxplot
shown here, which is fairly 15,0

symmetric, i.e., mean and

Numerical value

median are very close values,

the two halves of the box and 5,0

whiskers are comparable.

0,0
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Let us now consider the data that is certainly skewed as those distributed in a lognormal way and
proceed as before.

Sorted data, . Probability, Normal quantiles, Lognormal quantiles,

Raw Data . Ranking . . X

Xi pi qi Inqi
0,5305 0,1510 1 0,03 -1,1406 0,0077
0,7821 0,1737 2 0,10 -0,4382 0,0103
0,8641 0,2469 3 0,17 -0,0388 0,0208
0,9851 0,5224 4 0,23 0,2657 0,0739
1,0264 0,5305 5 0,30 0,5245 0,0756
0,1510 0,5591 6 0,37 0,7580 0,0816
2,1861 0,7821 7 0,43 0,9777 0,1292
0,1737 0,8186 8 0,50 1,1912 0,1369
0,8186 0,8641 9 0,57 1,4047 0,1465
0,5224 0,9851 10 0,63 1,6244 0,1714
1,0569 1,0264 11 0,70 1,8580 0,1797
0,2469 1,0569 12 0,77 2,1167 0,1858
4,7780 2,1861 13 0,83 2,4213 0,3738
0,5591 3,1874 14 0,90 2,8207 0,4900
3,1874 4,7780 15 0,97 3,5230 0,6153

Mean = 1,1912

Std Dev = 1,2715
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QQ-Plot (Normal)
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5,0000 °

4,0000

y=0,8579x + 0,1693 °
3,0000 R?=0,7244 .7

2,0000

Sorted data, xi
®

.
.
N
.
-t

1,0000 seeo0® o

0,0000

.
.t
.

-1,0000
-2,0000 -1,0000 0,0000 1,0000 2,0000 3,0000 4,0000

Normal quantiles, gi

Sorted data, xi

6,0000

5,0000

4,0000

3,0000

2,0000

1,0000 .
’ '

0,0000 **
0,0000  0,1000
-1,0000

QQ-Plot (Lognormal)

y = 7,0334x - 0,0741
R?=0,9715

.
.
.
.*
o
.
-
ot
.
o
o®
.
.

.
.t
*
.

.®
.
ot
.
.
.
.®
o
.
s

0,2000 0,3000  0,4000  0,5000

Lognormal quantiles, Ingi

.
.
=
—
.
.®
.

0,6000

0,7000




INFERENTIAL STATISTICS

In this case the situation of "imbalance" in the data distribution is also well indicated by
the boxplots: that of raw data as is looks visibly asymmetrical while that of natural
logarithm of raw data looks symmetrical.

Boxplot Raw Data Boxplot Lognormal Raw Data
6,000 2,0000
1,5000 °1,5640
5,000
: ©1,1592
04,7780 1,0000
—F—0,7821
@ 4,000 @ 0,5000
= 3
4 S 0407
= 20,0000 )
Q o -
£ 2,1861 § o 0,6416
o,
Z 2,000 ’ < .1,0000
——L —.1,3989
%1.191 -1,5000 ’
1,0569
1,000 '8186 :113385
'5224 -2,0000
0,1510
0,000 -2,5000
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In this case histograms are even more explicative.

Histogram Raw Data Histogram Lognormal Raw Data
14 8
7
1 12 7
6
10

> 5

g 3 2
g g_ 4

g 6 o
[ L) 3

4 ) 2
2
0 ] 0
[0,1510, 1,9510] (1,9510, 3,7510] (3,7510, 5,5510] [-1,8907, -0,4907] (-0,4907, 0,9093] (0,9093, 2,3093]
Data

Data
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IF THE REAL DATA IS NOT NORMALLY DISTRIBUTED
IT IS NOT THE END OF THE WORLD!

The data can be normalized by performing mathematical operations on them (e.g.,
natural logarithm, square root, reciprocal, etc.) or different types of tests can be used, the

so-called «non-parametric tests».

An example for all: the TOTAL IMPURITIES CONTENT for a series of batches
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Total Impurities Content (%)
0,19 Histogram of Total Impurities content (%)

0,22

0,45
[0,19, 0,25] (0,25, 0,31] (0,31, 0,38] (0,38, 0,44] (0,44, 0,50]

0,30
0,30
0,40
0,50
0,32
0,28
0,30
0,30
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0,27 Total Impurities Content (%)

Frequency
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Natural Logarithm of
Total Impurities Content (%)
-1,6607 7
-1,5141
-0,7985
-1,2040 5
-1,2040
-0,9163
-0,6931
-1,1394

Histogram of Natural Logarithms of Data

Frequency

N

[EY

-1,2730
-1,2040
-1,1712

-1,3471 [-1,66,-1,50] (-1,50,-1,34] (-1,34,-1,18] (-1,18,-1,02] (-1,02,-0,85] (-0,85,-0,69]
-1,3863

-1,3093

o

In (Total Impurities Content)
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Natural Logarithm of Total Impurities

content: Descriptive Statistics
Mean -1,2017
Standard Error 0,0650
Median -1,2040
Mode -1,2040
Standard Deviation 0,2518
Sample Variance 0,0634
Kurtosis 0,4853
Skewness 0,4249
Range 0,9676
Minimum -1,6607
Maximum -0,6931
Sum -18,0250
Count 15

Density

1,80
1,60
1,40
1,20
1,00
0,80
0,60
0,40
0,20
0,00

ﬁ,\

Normal Distribution: Mean=-1.2017 sd=0.2518
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What is the probability that P (X >0,50%) or P(In X>-0,6931) ?
or, in other words:

What is the probability that the Total Impurities Content could exceed the limit ?

P(X < 0,50 or InX<-0,6931) = 0,9783 — v ﬁ = NORM.DIST(-0,6931;-1,2017; 0,2518;TRUE)
P(X > 0,50 or InX >-0,6931) = 0,0217 —

(V' Jfx| =1-0,9783

in percent = 2,17 ) X v fx| =0,0217 * 100




INFERENTIAL STATISTICS

What does this mean in practice?

» Based on these data there is more than 2% probability that the
Total Impurities Content could exceed the upper specification limit

» 0O0S may be observed !
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4

L)

* In the examples shown up to now (i.e., critical temperature and total impurities

L)

content) the possibility of calculating the probability associated with a given range of

values has been used.

4

L)

L)

*  However, it is also possible to proceed “in the opposite direction” and this can be

useful for practical cases such as the one in the next case study.

4

L)

*  For this purpose, Excel provides the NORM.INV function which returns the inverse of

L)

the normal cumulative distribution for a specified mean and standard deviation.
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/

» Let’s suppose we want to estimate the mean and standard deviation of a compressing process to
produce tablets whose weight must be 50 + 2 mg.

4

» Let's say we want 99.7% of our tablets to fall within our specification limits (48mg to 52mg). This is

L)

equivalent to allowing a total of 0.3% defects, or 0.15% on each side of the distribution (assuming
it's symmetric).

(4

*» The z-scores corresponding to these defect rates can be found using the NORM.S.INV function in

L)

Excel, i.e.:

= ABS(NORM.S.INV(0.0015))

The result will be approximately 2.9677. This is the number of standard deviations away from the
mean that corresponds to the top and bottom 0.15% of the distribution.
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“* Now, let's estimate the mean (fi) and standard deviation (&) using the following

formulas:
‘L,i . (LTL X ZUTL) - (UTL X ZLTL)
ZUTL — ZLTL
O' p—
ZUTL — ZLTL
where:

= UTL and LTL represent the Upper and Lower Tolerance Limits (i.e., 52 mg and 48

mg)
" zyrL and z;r; represent the standardized errors estimated using NORM.INV (i.e.,

2.9677 and - 2.9677 )
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Substituting these values into the formulas:

B ((48 x2.9677) — (52 x (- 2.9677)))
o= (2.9677 — (- 2.9677))

= 50mg

A (52 —48)
(29677 — (2.9677))

= 0.67 mg

Therefore, the estimated mean (ir') will be 50mg and the estimated standard deviation
(6) will be approximately 0.67mg. This is the standard deviation that we need in order to

ensure that 99.7% of our tablets are within the specification limits of 48mg to 52mg.
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This last case study can also be considered a simple example of

Science based QA

since the outcome of the compressing process is “modeled” on a logical basis (i.e.,

normally distributed weights) and it is not left to chance.

Better Science = Better Outcomes = Less Costs




PARAMETER
ESTIMATION
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Back to the introduction to Inferential Statistics methods, two big topics were
mentioned and the first was:

Parameter Estimation

which consists in the best evaluation of an unknown parameter of the
population (for example, the mean p or the standard deviation ) using the

sample data.

This evaluation can be of two types: punctual or by intervals.

What does it mean ?
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= punctual estimation methods provide, for the estimated parameters, a single
value and do not offer any information on the precision of this value.
For this reason, it is often preferred to use interval estimates that provide a range

of possible values.

= from a “punctual” point of view, for example, the sample mean, X, is an

"appropriate estimator" of the unknown population mean, g, but this in no way

implies that the sample mean coincides exactly with that of the population from
which that sample comes.
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= the method of interval estimates, due to Neyman, allows to determine, on the basis of
sample observations, an interval called confidence interval, within which lies, with a
prefixed probability (usually 95% or 99% or 0.95, 0.99) called level of confidence, C, the

true and unknown parameter to be estimated (e.g., 1 or G).

= The complement to 1l of Cis the so-called Level of Significance and it is indicated with
(= 1- C) and it equal to 0.05 or 0.01.

= [evel of Confidence, C, and Level of Significance, &, measure the same thing: how sure we

are that we are making the right decision or not !
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What is the practical use of all this?

Let see two practical examples !
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Tablet weight (mg) Tablet weight (mg) Summary Statistics
50,29
20 tablets from a validated process are 48,81 Mean 49,84
. . 49,79 Standard Error 0,19
sampled in-process and weighed. We want 5148 Medion 4977
to determine the 95% and 99% confidence 49,19 Standard Deviation 0,83
. . 50,23 Sample Variance 0,70
intervals for the mean weight of all tablets 19,46 CUrtosis 023
produced. 48,14 Skewness 0,19
49,18 Range 3,35
/Sgﬂﬂ/' Minimum 48,14
using the Data Analysis tool 50,56 Maximum 51,48
48,93 Sum 996,83
using CONFIDENCE.NORM(0,05; 0,83;20) 20,06 Count 20
49,29 Confidence Interval (95,0%) 0,3906
49, '
using CONFIDENCE.T(0,05;0,83;20) 49,51

Confidence interval (95%) normal distribution 0,3638

49,74

using CONF|DENCE.NORM(0,01;0,83;20) \E’O'i’\’ Confidence interval (95%) t-distribution 0,3885
51,

using CONF|DENCE.T(0,01;0,83;20) \ Confidence interval (99%) normal distribution 0,4781

Confidence interval (99%) t-distribution 0,5310
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A few remarks:

= The CONFIDENCE.NORM function returns the confidence interval for a population
mean, using a Normal distribution while the CONFIDENCE.T function returns the

confidence interval for a population mean, using a Student's t distribution.

= The CONFIDENCE.NORM function should be used with a sample “large enough” (i.e., 30

or more observations) while for smaller samples it is better using the CONFIDENCE.T

function.

= The Confidence Interval calculated using the “Data Analysis” tool is more similar to the
one obtained using the CONFIDENCE.T function rather than the CONFIDENCE.NORM

function. This makes sense since the sample consisted of only 20 observations.




INFERENTIAL STATISTICS

» Using the Confidence Level value (95%) calculated using Calculations
the "Data Analysis" tool, which is slightly higher as it is
calculated assuming an “unknown variance”, it is
possible to calculate the Confidence Interval as shown Count 20
on the side.

Confidence Interval (95,0%) 0,3906

Mean 49,84

= Thus, with a 95% probability, our validated process will
produce tablets having an average weight between 49.65
mg and 50.04 mg.

Standard Deviation 0,8345

Confidence Interval for the Mean

=  Among other things, this measure can tell us quickly and
Lower Limit 49,65

above all in a serious way, if our process is working well

or not ! Upper Limit 50,04
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Now let's consider another case study that well

illustrates the practical importance of using

Confidence Intervals
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Let’s consider, for example, a

retrospective analysis of temperature

measurements (e.g., for APQR) which Interval Plot of Temperature measurements

should not exceed a limit of 100 °C.

Individually none of the values is
equal or greater to 100°C but....
2017 2018 2019 2020 2021

95,0 T T
90,0
85,0

93,8 90,8 99,4 91,0 95,7

97,4 91,8 98,0 87,1 94,2 80,0

91,0 97,0 98,8 93,2 95,0
2017 2018 2019 2020 2021

Temperature (°C)

95,4 96,7 89,5 88,5
79,2 93,3

Year
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A B C D E F G H J K L
1
2 2017 2018 2019 2020 2021
3 91,0 97,0 98,8 93,2 95,0
4 93,8 90,8 99,4 91,0 95,7
5 97,4 91,8 98,0 87,1 94,2
6 95,4 96,7 89,5 88,5
7 | 79,2 93,3
8
9 Mean 91,4 93,9 96,4 90,0 95,0
10 |Dev. Std 7,1894 2,8208 4,6522 2,7012 0,7506
11 [CV% 7,87 3,00 4,82 3,00 0,79
12 |Count 5 5 4 4 3
13 |Confidence interval (95%) 8,9269 3,5025 7,4026 4,2983 1,8645
14
15 Year Mean Lower Conf. Interval Limit Upper Conf. Interval Limit
16 2017 91,4 4,5 4,5
17 2018 93,9 1,8 1,8 Interval Plot of Temperature measurements
18 2019 96,4 3,7 3,7
19 2020 90,0 2,1 2,1 100,0 T
20 2021 95,0 0,9 0,9 -
21 £ 950 T T
22 f:j'
;j E_ 90,0
£
25 850
26
27 80,0
28 2017 2018 2019 2020 2021
29 Year
30
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WARNING

» The example just shown does not apply only to a situation like the one

described (e.g., APQR) but also, for example, to the management of OOS.

» An « anomalous data », in fact, is not so « anomalous » if the average of the

population from which it derives is in an interval that exceeds a specific limit.

When investigating an OOS always look at the Confidence Interval !
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WARNING !

Using Excel, it is also possible to calculate other statistical intervals

such as those of Prediction and Tolerance.

However, their calculation has not been considered here as it is a

bit more laborious, and this would have further burdened the

presentation.




HYPOTHESIS
TESTING
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Back to the introduction to Inferential Statistics methods, the second topic mentioned

Was:

Hypothesis Testing

The statistical verification of the hypotheses evaluates the degree of reliability that can
be attributed to them in the face of the empirical evidence represented by the sample

observations available.

We will see, once again, the practical utility of probability distributions!
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In practice:

Statistical hypothesis: an assertion regarding the parameters of one or more

populations that we want to test or investigate.

Hypothesis testing: the procedure that leads to a decision concerning a particular

hypothesis and is based on a random sample extracted from the population of

interest.
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= Null Hypothesis: H,, is the “default hypothesis”, the “thing that is accepted”, the

currently accepted value for a certain parameter.

= Alternative Hypothesis: H, or H, and also called, in some books, “the research

hypothesis”, involves the assertion to be tested.

Let's see a practical example
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Within a Company it is believed that, on the average, a given chemical process leads to 100 kg of API. A
QA Officer claims that, after the last change to the equipment, the average yield is no longer 100 kg.

Statistical hypothesis: H,: 1. = 100 kg (Null hypothesis) two-tails

-

Hy: u# 100 kg (Alternative hypothesis)

Note :
* Hypotheses are always statements about the population or distribution being studied,
NOT about the sample.

* H,and H, are mathematical opposites of one another and together they cover all possibilities !
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= There are just two possible outcomes:
* Reject the Null Hypothesis: we then believe H, to be the case

* Fail to reject the Null Hypothesis : we basically keep H,

How can we do the testing ?

How can we reject H, or not?
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With regard to our case study, let us first define some key points:

= jtis a hypothesis test about a population mean, g, that it is reasonable to assume is

normally distributed

2

= we assume that the population variance, 64, is unknown

= |et’s suppose we have a limited number of yield values, and this implies that the “test-

statistic” to be used is the t-statistic.

" |n practice we have only 15 yield values with an average yield x = 101.2 Kg and a

standard deviation s = 1.3 Kg.
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The test statistics t to be calculated is: A 5 ¢ b
1
) Terms of the problem
X — 101.2 —-100 3
T =>2"L = = 3.575 =
s /\n 1.3 /415 4 o= 100,0
5 e # 100,0
While —t_and + t_ are obtained using the T.INV.2T function 6 a= 0,05
which returns the two-tailed inverse of the Student's t- ’
8 Experimental evidence
distribution. 9
. . 10 . of batches = 15
Since T value falls outside the acceptance zone bounded by i - O batehes
—t_and +t_, there is evidence to reject the null hypothesis at |12 Average yield=  101,2
13
a= 0.05. 14 Standard deviation= 1,3
15
In other words: - tc= 2145 2,145
the QA Officer was right ! L2
18 T= 3,575
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Let’s remember the initial statistical hypothesis, i.e.:
Ho: 1= 100 kg (Null hypothesis) two tails test
H,: u# 100 kg (Alternative hypothesis)

If, instead, the assumption of the QA Officer had been that the yield was greater than 100 Kg,
how would have been H, and H,? Simple:

Hy: 1 < 100 kg (Null hypothesis) one (right) tail test
H,: u> 100 kg (Alternative hypothesis)

and what would hypothesis testing be like?
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Again, the value of the T-test statistic would be the same as L :
calculated before, i.e., 3.575. Terms of the problem
However, since in this case the test is “one side only”, the t_value Hg=| 1090

Lys| 100,0
will be calculated using the T.INV function which returns the a= 005

inverse of the left tail Student's t-distribution. i i
Experimental evidence

Also, in this case the value of T falls beyond the limit n.of batches= 15

corresponding to t,, and therefore there is evidence to reject the Rerage yeli=| 1012

null hypothesis at oo = 0.05.

Standard deviation = 1,3
In other words:
tc= 1,761
the QA Officer is still right ! — s
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" From what has just been shown, the power and usefulness of

hypothesis testing for practical purposes clearly emerge.

= |tis therefore worth seeing some other applications of practical

use.
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47,98

Let’s consider a validated tableting process that, under normal operating i;’ig
conditions, produces tablets with an average weight of 50.36 mg and a 49,69
L. 50,46

standard deviation of 2.235 mg. 50,90
During the production of a batch of tablets, 20 in-process samples are 23;3
taken randomly, the weights of which are shown in the table on the side. 48,90
53,72

We want to test the hypothesis that the process is under control, namely 51,16
that: 49,91
53,42

46,08

Hy: 1=50.36 mg vs. H;: u#50.36 mg 49 41

51,24

at a significance level of 5% (a = 0.05) or, alternatively, at a confidence 47,00
53,16

level of 95% or 0.95. 52,69
48,17
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Let’s consider a validated tableting process that, under normal operating conditions, produces

tablets with an average weight of 50.36 mg and a standard deviation of 2.235 mg.
Since the standard deviation (or variance) of the population is known, the test statistic to use is:
X — U

g

Jn

The sample mean can easily be obtained from the weight values using the Excel AVERAGE

/ =

function while critical values for Z can be obtained using the Excel INV.NORM.S function.
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The test statistics t to be calculated is:

H | J K L
X — 50,74 —50,36
Z = R — = 0,760 T f the problem with k '
O'/\/ﬁ 2’235 /\/2_0 erms o e problem wi nown process variance
Ho= 50,36
While —z_ and + z_ are obtained using the NORM.S.INV 1% 50,36
c=| 2,235
function which returns the inverse of the standard o= 0,05

normal cumulative distribution. The distribution has a

o Experimental evidence
mean of zero and a standard deviation of one.
n. of batches = 20

Since Z value falls within the acceptance zone bounded A o
—_— verage yield= 50,74

by -z_and +z,, there is insufficient evidence to reject P = R T P S e e

the null hypothesis at o= 0.05.

Z= 0,760

In other words:

based on the sample data the process is under control !
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Let's consider the example just seen assuming we don't know the standard deviation (or

variance) of the process:

it is a hypothesis test about a population mean, g, that it is reasonable to assume is

normally distributed

2

= the population variance, 6“ , is unknown

= |n practice we have 20 weight values with an average value of x =50.74 mg and a standard

deviation s = 2.6982 mg.

= Since we have a limited number of weight values, the “test-statistic” to be used is the t-

statistic.
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The test statistics t to be calculated is:

@ f Q R
T = X—HU — 50.74 —50.36 — 06298 Terms of the problem with unknown process variance
s /\n 2.6982 //20
o= 50,36
. . . . wy# 50,36
While —t_ and + t_ are obtained using the T.INV.2T function e B

which returns the two-tailed inverse of the Student's t- , _
Experimental evidence

distribution.
n. of batches = 20

Since T value falls within the acceptance zone bounded by
Sample Average weight = 50,74

—t_and +t, there is insufficient evidence to reject the null
Sample Standard deviation= 2,698

hypothesis at a= 0.05.

tc= -2,093 | 2,093

In other words:

T= 0,630

based on the sample data the process is under control !
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Consider an automated manufacturing process that rejects tablets if they weigh less than

95 mg or more than 108 mg.

Out of 100 tablets we obtained: 3 tablets < 95 mg and 2 tablets > 108 mg.

—

In fact, assuming that the weights of the tablets are normally distributed, which is

with this information alone we can estimate the average and

standard deviation of the production process that generated it!

reasonable, then....
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P(w<95mg)=<b(

P(w>108 mg)=1

95—u)
o

_(D(108—u

o

from which it follows that:

—)

pum—

95-U=0 Zyp3

108 -pu=0 Z;4g

—

)

1 —c1>(1°8‘“) — 0.02

95-u=0(1.88) U =101.22 mg
108 - u =0 (2.05) l oc=3.31mg

where Z, ,; hand Z, oc have been calculated using the Excel NORM.S.INV function
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Everything seen so far has shown how the STATISTICAL HYPOTHESIS TEST can be useful in many

practical cases:
- “infer” from experimental data crucial information on the state of a process

- check if a certain “parameter” lies within the confidence interval (typical application:

determining if a result is an OOS)

- compare the mean values or the spreads of two or more datasets (typical applications of

this are in: suppliers' validation, comparison of analytical data generated by different

methods, etc.)




4 h
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I-Sample t test, 2-Sample t test and

2-Variances test

\_ W




INFERENTIAL STATISTICS

Hypothesis tests, such as those just also allow to establish if:
® The mean of a sample differs significantly from a specified value > 1-Sample t test

® Two data group means are different > 2-Sample t test

® The variances, or the standard deviations of two data groups differ = 2 Variances test
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1-Sample t test

Null hypothesis:

Ho:t M= Mg The population mean (p) equals the hypothesized mean (p,)

Alternative hypothesis:

Hpi:p# Y, The population mean (u) differs from the hypothesized mean (p,)
Hpi: >, The population mean (p) is greater than the hypothesized mean (p,)
Hi: < i, The population mean (p) is less than the hypothesized mean ()
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2-Sample t test

Null hypothesis

Ho: M, — MK, =0  The difference between the population means (pu, — 1,) equals zero

Alternative hypothesis

Hi:p—m,z0 The difference between the population means (p, — p,) does not equal zero
Hi:p—pn,>0 The difference between the population means (p, — u,) is greater than zero

Hi:p—p,<0 The difference between the population means (p, — W,) is less than zero
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2-Variances test
Null hypothesis

Hy:o,/0,=1  The ratio between the first population standard deviation (o;) and the second
population standard deviation (o,) is equal to 1.

Alternative hypothesis

Hi:o,/0,#1  The ratio between the first population standard deviation (o;) and the second
population standard deviation (o,) does not equal 1

Hi:o,/0,>1  The ratio between the first population standard deviation (o;) and the second
population standard deviation (o,) is greater than 1

Hi:o0,/0,<1  The ratio between the first population standard deviation (o) and the second
population standard deviation (o,) is less than 1
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Let's see a few practical examples
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Let’s consider six HPLC assay values | assay values (%)

Cp 100,05
within specs (NLT 100%) and one 100,00 Mean (X) 100,05 = AVERAGE(C5:C10)
“borderline” value (99,85%). 100,07 Std. Dev. (s) 0,0362 = STDEV.S(C5:€10)

100,10 Count 6 = COUNT(C5:C10)
Is this an OOS result, or does it belong 100,02 Standard Error of Mean (SEM)  0,0148 = F7/(SQRT(F8))
) 100,03 Degrees of freedom (dof) 5 =F8-1
to the same population of the other Hypothesized mean (1) 99,85
values ? t-statistic 13,19698 = (F6-F11)/F9
P-value (two-tail test) 0,0000 =T.DIST.2T(F13;F10)

1 Sample t-test

Since P-value < 0.05 there is evidence enough to reject the
Null Hypothesis, i.e., Hy:p =99.85 or Mean Assay value = 99.85
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Sodium Acetate pH values

Let’s consider two series of pH In-house Supplier’s CoA
values, one determined in-house Sample 1 8.1 8.1
on real samples and the other Sample 2 8.3 8.1
reported on the corresponding Sample 3 8.2 8
CoAs provided by the supplier Sample 4 8.5 8.4
together with the samples. Sample 5 8.5 8.4

Mean value 8.32 8.20

On the average are the two series of data here above
reported, statistically different or not?
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Let’s first look at data visualization using boxplots.

Boxplot of pH values : In-house vs. Supplier
Both datasets are within specs and box widths look | 4,
. ——

rather similar. 91

8,9
Apart from this, we cannot say much more. 8,7

8,5
The t-test can tell us whether the two mean 8,3 - -
values are statistically different or not, but before i;
applying it, it must be established whether the ;-:;.-
variances of the two populations significantly differ | 7~ —x—
from each other or not. In fact, there are two "
pOSSible types Of t-tests I B In-house [ Supplier’'s CoA | LSL |l USL
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B C D F-Test Two-Sample for Variances
In-house Supplier’s CoA Supplier’s CoA  In-house
81 81 Mean 8,20 8,32
8,3 8,1 Variance 0,035 0,032
8,2 5.0 Observations 5 5
8,5 8,4 df 4 4
8,5 8,4
F 1,0938
Mean= 83 8,2 P(F<=f) one-tail 0,4664
Variance= 0,032 0,035 E Exitleal chigetal Spae

Examination of the variances in the two samples shows that one is numerically greater. The F-test is then
performed using this as the first sample. THIS IS VERY IMPORTANT IN EXCEL !!

The outcome of the test does not show a significant difference in the variances of the two populations and

therefore we will be able to apply the t-test assuming equal variances.
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t-Test: Two-Sample Assuming Equal Variances
Since the value of the t-test statistic
. L In-house Supplier’s CoA
(1.0366) is found to be within the two- e 832 8 20
tailed critical t interval (-2.3060, Variance 0,032 0,035
. g Observations 5 5
+2. 9
2.3060), at the 5% significance level T — 0,0335

(or 95% confidence) we can say that Hypothesized Mean Difference 0
there is no significant difference o 2

t Stat 1,0366
between the two mean values. P(T<=t) one-tail 0,1651

t Critical one-tail 1,8595

P(T<=t) two-tail 0,3302

t Critical two-tail 2,3060
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In-house 1 Supplier’s 1 CoA
Instead, let’s now consider the data 8.1 8.6
in the table on the side relating to a 8.3 36
different supplier (Supplier 1). 25 o c
8.5 8.9
8.5 8.9
8.32 8.70

Again: are the two mean values here above reported, statistically different or not?
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In this case it is evident that the two pH Boxplot of pH values : In-house 1 vs. Supplier 1
data distributions are shifted from each 93
+

other. However, box widths are still 9,1
comparable = data spreads look similar. | _ 83

% 8,7
Only the t-test can confirm whether the Z 85

o
two average values are significantly v 83 -

=1
different or not, but, once again, to T 81

) T 79
apply the correct one, we must first o .
establish whether the variances of the 75 »
two populations can be considered 7.3
equal or not.
9 M In-house 1 M Supplier’s 1 CoA M LSL M USL
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In-house 1 Supplier’s 1 CoA F-Test Two-Sample for Variances
8,1 8,6
8,3 8,6 Supplier’s 1 CoA In-house 1
8,2 8,5 Mean 8,70 8,32
Variance 0,035 0,032
8,5 8,9 Observations 5 5
8,5 8,9 df 4 i
F 1,0938
Mean = 8,3 8,7 P(F<=f) one-tail 0,4664
Variance= 0,032 0,035 F Critical one-tail 6,3882

As also for the previous case, the examination of the variances in the two samples
shows that one is numerically greater. The F-test is then performed using this as the
first sample.

The outcome of the test does not show a significant difference in the variances of the
two populations and therefore we can apply the t-test assuming equal variances.
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In this case, since the value of the t- t-Test: Two-Sample Assuming Equal Variances
test statistic (-3.2827) is outside the iichoused |Supplier’sd (oA
two-sided critical t interval (-2.3060, | Mean 8,32 8,70
Variance 0,032 0,035
of 5% (or 95% confidence) it can be | Pooled Variance il
Hypothesized Mean Difference 0
said that there is a significant df 8
difference between the two mean | > : e
P(T<=t) one-tail 0,0056
values. t Critical one-tail 1,8595
P(T<=t) two-tail 00113
t Critical two-tail 2,3060
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Summing up:

** in both cases no significant difference was observed in the variances of the populations from

which the samples under study were extracted and therefore the t-test for equal variances was

always applied

*» unlike the first case, in the second a significant difference was observed between the averages

of the values measured at home and those reported on the CoA of Supplier 1.

A possible hypothesis could be that Supplier 1 uses a different method than the in-house one

which systematically overestimates the values ... but this is a matter for another investigation ©
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LINEAR REGRESSION

The objective of Ordinary, or simple, Linear Regression (OLR) is to mathematically

describe the effect of an independent variable X (aka, predictor, regressor or explanatory

variable) on a dependent variable Y (aka, response, outcome ) using a formula which

shows what happens to variable Y when the variable X changes.




LINEAR REGRESSION

14,5

Since data pairs usually 140 .
[ ]

appear as a cloud of points o * ., eesg

13,0 ° °
. ' [ %o
like that shown here on the s . g o e :

2 o O

. . . o ® e
side, the problem is to find 1o o3 ® o MY

11,5 o %00 o
the so called best-fit line also 1o

11,5 12,0 12,5 13,0 13,5 14,0 14,5

known as regression line. x

To obtain this line, OLR uses the so-called Least Squares Method which minimizes the
distance between the experimentally measured data and the straight line we are looking for.




LINEAR REGRESSION

The classical regression line, or Ordinary Least-Squares Regression (OLR or LSR), is based on the
minimization of the sum of the squares of the differences between the observed values of Y (y;) and

those estimated by the regression line (y;) relative to the variable Y only.

Y

O

v Residual or Residual Error
!

Ym Y 0 = ¥i — Vi

y; = experimental data
y; = calculated value
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Regression line equation y =a+ bx

Line intercept a =y — bx

Line Slope or . ilxi — x)(y; — ¥) Cov (X,Y)

Regression coefficient = - — 2
Zi(xi — X)* Ox
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The fact that OLR is based on minimizing the sum of squared deviations, or "residuals”, only

in the « y direction» has profound practical implications:

» If we invert the two variables x and y, we obtain a different Least Squares Regression
line.

» Understanding the properties of residuals is vital in determining whether the model is
good or not.

» It is desirable that the residues be small and undistorted (or unbiased).

» The model is susceptible to outliers and anomalous data.
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For regression analysis it must be used the "regression tool" accessible from "Data Analysis"

Filer Home Insert Pagelayout Formulas Data Review View Help Acrobat Power Pivot [ t? Comments
@E [& From Text/csv [ From Picture v ’T{h_u [H Queries & Connections Al ? N2 (?E s I % @ 8H Group ~ =
S g (o g - ; -
v 2] v ==
Get [& From web [ Recent Sources Refresh [ Stocks Currencies z| Sort Filter B Text to = =g What-If Forecast *Hungroup i
5 A : 5
Data~ EF From Table/Range [ Existing Connections A~ [5 \& Advanced ~ Columns B0 [ Analysis~  Sheet Ef subtotal
Get & Transform Data Queries & Connections Data Types Sort & Filter Data Tools Forecast QOutline [ Analysis v
. Data Analysis ? X

Analysis Tools
OK

F-Test Two-Sample for Variances
Fourier Analysis Cancel
Histogram

Moving Average

Random Number Generation

Rank and Percentile

gRegesson |
Sampling

t-Test; Paired Two Sample for Means

t-Test: Two-Sample Assuming Equal Variances

Help




LINEAR REGRESSION B c D : ] G . )
y X _7 Regression ? X
12,1330 11,8086 | input _
11,9474 11,6054 : ih P — T 1
| nput Y Range: : T |
12,0174 11,6226 _ ¢ : —
13,3408 12,8263 | Input X Range: $C$2:3C$91 i
: : 12,3621 12,1189 ‘ i :
Regression analysis results : : | el
g y 13,0515 12,6155 _ Labels (] Constant is Zero =P
1 12,3362 12,0966 | Confidence Level: 95 7 %
can be obtained on the same 121375 11e113 L
. 11,9289 12,3944 | Output options
worksheet, in a new 134676 130182 ry
e OQutput Range: L
12,6061 12,2452 L —
worksheet or even in a new 12,5504 | 12,3320 | O New Worksheet ply
TT368—TT,9208 » () New Workbook
workbook selecting the 12,8281 13,0853 Residuals
13,8177 134311 Residuals Residual Plots
a pprOprlate Output Optlon 12,6316 12,1127 Standardized Residuals Line Fit Plots
) 13,0930 12,8084
13,5746 13,1424
12,1866 11,7491 ] R —
13,5743 13,2670
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B C E F G H J K L M N O P Q R S T
y X
12,1330 11,8086 SUMMARY OUTPUT o
12,0174 11,6226 Regression Statistics 0,5
13,3408 12,8263 Multiple R 0,949704 A.
12,3621 12,1189 R Square 0,901938 73 0
13,0515 12,6155 Adjusted R 0,900811 T 0,0000 x Line Fit Plot
12,3362 12,0966 Standard E 0,180967 e 0°
. 20,0000
12,1375 11,9113 Observatio 89 . 15,0000 1 o
11,9289 12,3944 > 10,0000 .
13,4676 13,0182 ANOVA ool Normal Probability Plot
12,6061 12,2452 df SS MS F ignificance F 0,000( o
12,5544 12,3320 Regression 1 26,20543 26,20543 800,1923 1,21E-45
11,9368 11,9208 Residual 87 2,849155 0,032749 15
12,8281 13,0853 Total 88 29,05458 > 10
13,8177 13,4311 >
12,6316 12,1127 Coefficientsandard Err¢  t Stat P-value Lower 95%Upper 95% ower 95,0% pper 95,0% 0 (I) 2'0 4|0 6IO 8I0 1 (.]0 1; 0
13,0930 12,8084 Intercept 0,44511 0,432037 1,03026 0,305744 -0,41361 1,30383 -0,41361 1,30383 SamplePercarile
11,9105 11,6478 X 0,98679 0,034884 28,28767 1,21E-45 0,917454 1,056125 0,917454 1,056125
12,8167 12,4394
13,5746 13,1424
12,1866 11,7491
13,5743 13,2670 RESIDUAL OUTPUT PROBABILITY OUTPUT
12,4063 11,9374
13,4878 13,2710 ObservationPredicted y Residuals 1dard Residuals Percentile y
12,6940 12,2805 1 12,0977 0,035349 0,196452 0,561798 11,79134
12,1598 11,9745 2 11,89724 0,050149 0,278703 1,685393 11,85647 | J
12,7859 12,3615 3 11,91419 0,103181 0,573431 2,808989 11,88123
12,1670 11,8395 4 13,10192 0,238877 1,327569 3,932584 11,88247
121212 11 gA23 5 1240206 004188 -0 23274 5 N5A18 11901049
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This section contains summary indices such as R square which is used as an index of the

SUMMARY OUTPUT goodness of the regression curve. Multiple R is the square root of R square and is a "sample
) correlation coefficient”. Adjusted R square is R square but adjusted for the number of terms
Regression Statistics ) in the model.
Multiple R 0,9497
R Square 0,9019 . T
: The Standard Error or Standard Error of Estimates (SEE) measures the variability (standard
Adjusted R Square 0,9008 L . . . 10,
P —r— 01810 |« deviation) of the observed values (data) around the regression line. The higher it is, the
OBCETETiBRE 39 further the experimental data are from the regression line !
ANOVA
df SS MS E Significance F

Regression 1 26,2054 26,2054 800,1923 0,0000
Residual 87 2,8492 0,0327
Total 88 29,0546

Coefficients |Standard Error t Stat P-value Lower 95% Upper 95%  Lower 95,0% Upper 95,0%
Intercept 0,4451 0,4320 1,0303 0,3057 -0,4136 1,3038 -0,4136 1,3038
X 0,9868 0,0349 28,2877 0,0000 0,9175 1,0561 0,9175 1,0561

a

This Standard Error is instead the Standard Error of the sampling distribution
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SUMMARY OUTPUT - ——

Regression Sum of Squares represents the variability that
Regression Statistics the model explains. The bigger, the better.

Multiple R 0,9497

R Square 0,9019 Residual Sum of Squares represents the variability that the model

Adjusted R Square 0,9008 does not explain. The smaller, the better.

Standard Error 0,1810

Blo-eiiiar e i Total Sum of Squares represents the total variability due to the
dependent variable

ANOVA / P

df ss [/ / wms F Significance F

Regression 1 26,2054 / 26,2054 800,1923 0,0000

Residual 87 2,8492 0,0327

Total 88 29,0546

Coefficients  Standard Error t Stat P-value Lower 95% Upper 95%  Lower 95,0% Upper 95,0%
Intercept 0,4451 0,4320 1,0303 0,3057 -0,4136 1,3038 -0,4136 1,3038
X 0,9868 0,0349 28,2877 0,0000 0,9175 1,0561 0,9175 1,0561
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ESTIMATION OF THE GOODNESS OF FIT MODEL

\/

** Residuals represent the difference between the real value of the dependent variable
(Y) and the model predicted value (predicted Y or Y)

4

\)

* Residues should have the following characteristics:

L)

= have an average value of zero

= be independent and «normally distributed» (or, better, they do not display any
patterns)

4

2 )

L)

* Ingeneral. the value of Residue = y; — y; isplottedvs. y; or x;
observed - calculated
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Residual Plot

The residuals do not show
any pattern!
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Residual Plot
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The residuals show a pattern! II I
I II -
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Residuals plot consisting of

Histogram + density curve / \
obtained using JASP 0.17.2

Density
N
e

| I I I I |
-2 -1 0 1 2 3

Residuals
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Lack-of-fit means curvature in data.
What to do ?

SIMPLE : add a quadratic term !
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4

L)

»  Microsoft Excel® is undoubtedly the simplest, most widespread and most used "data

L)

management" program in companies, including those in the chemical-pharmaceutical

sector.

4

L)

L)

» Even if itis not a specific software for the statistical field, Excel allows you to do a lot

and at "almost zero" cost.

4

o,

L)

» Although we have seen many applications, there are still many that we cannot cover

here due to time constraints, but not only....




CONCLUSIONS

4

L)

* Excel has in fact numerous limitations precisely because it was originally developed

L)

for other purposes and only subsequently also adapted for statistical purposes. An

example for all can be the control charts and, in particular, those divided by year.

4

L)

* However, there is no doubt that its constant use would greatly increase the

L)

knowledge of the processes through the data they generate, would keep them better

under control and would also find ideas for their improvement.
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