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Before delving into the topic, it is worth clarifying 
that:

the reference to the “casino” is not at all extravagant!

Before the advent of modern computers, games of 
chance were the "artificial laboratory" in which the 
Theory of Probability was developed.

In fact, the most reliable random number generator is 
exactly roulette.

D. Cooper, B. Grinder, Risk Management.pdf (moaf.org), Financial History (Winter 2009)

https://www.moaf.org/publications-collections/financial-history-magazine/93/_res/id=Attachments/index=0/Risk%20Management.pdf
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Why are we talking about Monte Carlo?

 In pharmaceutical industry, even a tiny mistake can cost a lot—both in 
terms of money and the quality of the medicine we produce.

 That's why we can use something called simulation methods.

In this context, simulation obviously means imitation and reproduction of 
phenomena.
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Why are we talking about Monte Carlo?

 The aim for process 
simulation is to predict 
how a defined process 
would actually behave
under a given set of 
operating conditions.

 We can think of simulation methods as “practical exercises” that help us predict 
potential problems before they occur.
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Monte Carlo simulation

 Our focus is on a specific type of simulation called Monte Carlo simulation. 

 A good Monte Carlo simulation starts with a solid understanding of how the 
underlying process works. 

 We'll explore how Monte Carlo simulation can help us understand and control 
the process of producing better pharmaceutical products through simple case 
studies.
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What is Monte Carlo method?

 Imagine you're trying to understand a 
dartboard by throwing darts at it.

 Where these darts land gives us clues 
about the shape and characteristics of 
the dartboard.

 It is obvious that the more darts we throw, 
the better we will be able to know our 
target !
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How does Monte Carlo work?

 Monte Carlo works by taking many 
'random samples'—like our darts—
and using these to make educated 
guesses about the whole situation.

 It's like learning about an entire beach 
by studying a handful of sand 
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How does Monte Carlo work?

 Simply put, a Monte Carlo simulation generates random input values and 

calculates how a given system (e.g., a chemical reaction, a manufacturing 

process, an industrial operation, etc.) responds to those random inputs.

 It is just matter of defining a mathematical function (or transfer function) that 

represents the system and then Monte Carlo simulation can be easily applied.



9

A Little History

1930s Enrico Fermi uses random numbers to 
calculate the properties of neutrons

1940s After the advent of computers, scientists 
at the Los Alamos  National Laboratories 
(S. Ulam and J. von Neumann) refined 
Monte Carlo simulation and used it to 
predict the effects of nuclear explosions. Image of ENIAC programmers in the 40s 

N. Metropolis, The beginning of the Monte Carlo Method, Los Alamos Science, Special Issue (1987) pp.125-130
R. Eckhardt, Stanislaw Ulam, John von Neumann, and the Monte Carlo Method, Los Alamos Science, Special Issue (1987) pp.131-141
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Advantages & Limitations

 The advantages of Monte Carlo simulation are:

o easy to understand and visualize,

o flexible, it doesn't need a lot of assumptions about what you're studying,

o widely applicable:  mechanics, aerodynamics, project management, finance, 
astrophysics, meteorology, etc.

 The main  disadvantage is that it can require a lot of computer power, especially 
for more complex problems, but this is no longer an issue 
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Where do we use Monte Carlo in pharmaceutical manufacturing?

 essentially where we want to understand/forecast "unpredictable" situations 
(e.g., process optimization, risk assessment, DoE, supply chain management, 
etc.) 

 as tool that forecasts the impact of changes to ingredients or manufacturing 
processes on the quality of the finished product before a product is ever 
manufactured. With Monte Carlo simulation we can in fact “produce” an 
almost limitless number of “virtual batches” of a drug.



12

Where do we use Monte Carlo in pharmaceutical manufacturing?

 We will now see five case studies relating to as many practical situations in the 
pharmaceutical field, in particular:

o a crystallization process

o an API manufacturing process

o a micronization process

o robustness of an analytical method

o stability analysis
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Where do we use Monte Carlo in pharmaceutical manufacturing?

 These examples, although not exhaustive of all possibilities and highly simplified, 
are intended to show the practical usefulness and versatility of "Monte Carlo 
Simulations" in different scenarios within the pharmaceutical field

 The R scripts for the case studies illustrated below can be downloaded at:

https://github.com/rbonfichi/monte-carlo-simulation

https://github.com/rbonfichi/monte-carlo-simulation
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CASE STUDY 1 :
a crystallization process
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CASE STUDY 1

 Let's assume we have an empirical equation for a given crystallization process:

Crystal Yield (kg)= a × (Solute Concentration) + b × (Temperature) + c × (Pressure)

where a, b, and c are constants determined through experimentation or literature.

For example, this equation, including constants, could result from a DoE study.

 Clearly this is just a simplified example. In real-world scenarios, it could be more 
complex.



16

CASE STUDY 1

 At this point, a Monte Carlo simulation would proceed as follows:

1. Randomly select a value for each input parameter within its range (e.g., Solute Concentration 
between 0.5 M and 1.5 M, Temperature between 20°C and 30°C, etc.)

2. Use these values in the empirical equation to calculate the output value (i.e., Crystal Yield)

3. Repeat the process multiple times (e.g., 10000) to get a distribution of the output.

 4. Aggregate the results and visualize them using a histogram, then calculate summary 
statistics such as the mean and standard deviation.
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CASE STUDY 1

 As an example, let's imagine that:

o a = 2    b = 1.5     c = 0.8

o Solute Concentration: 0.5 M - 1.5 M

o Temperature: 20°C - 30°C

o Pressure: 1 atm - 3 atm
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CASE STUDY 1

DISTRIBUTIONS OF 
VALUES
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CASE STUDY 1

 Conducting a Monte Carlo simulation in R based on a hypothetical empirical equation:

Crystal Yield (kg)= 2 × (Solute Concentration) + 1.5 × (Temperature) + 0.8 × (Pressure)

we get the results shown in the next slide.
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CASE STUDY 1

mean crystal yield sd crystal yield min crystal yield max crystal yield
41.09         4.39          32.16       50.16
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CASE STUDY 1

What does this simulation tell us and why is it useful ?

 The histogram and summary statistics give you an idea of the range and distribution of 
the crystal yield. 

 This helps you understand the uncertainty associated with the process. For instance, 
knowing that the yield could vary between 32 kg and 50 kg is valuable information for 
Quality Control and Production planning.
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CASE STUDY 1

What does this simulation tell us and why is it useful ?

 Risk Assessment: Knowing the distribution of possible outcomes helps in assessing risks. 
For example, if a minimum yield of 40 kg is required for profitability, we can calculate the 
probability of falling below this threshold.
In fact, assuming that the data are normally distributed, it can be estimated that:

mean crystal yield sd crystal yield 95% CI on mean Probability of Yield below 40kg

41.04         4.41          40.96 - 41.13 40.71 % 
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CASE STUDY 1

What does this simulation tell us and why is it useful ?

 Decision Support & Resource Allocation: If one parameter/step has a significantly 
higher impact on yield, it may be worthwhile to invest in better control mechanisms 
for that parameter/step. This information aids in making informed decisions (see next 
case study).

 Benchmarking: The mean and standard deviation can serve as benchmarks for actual 
production. Deviations from these benchmarks could be indicators of anomalies or 
shifts in the process.
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CASE STUDY 2 :
an API manufacturing process
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CASE STUDY 2

 Suppose you have extracted from pilot studies data of a given API a relationship that 
links together:

Assay,  total impurities,  residual humidity (LOD)  and  residual solvents content

and which, by hypothesis, looks like:

Assay = 101.255 – (4.647 × LOD) – (22.58 × Total Impurities) – (210.4 × Solv1) + (125.8 × Solv2) + 
(171.0 × Solv3)
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CASE STUDY 2

 Let's assume that, based on the data available to us, we know that:

Spec. limits Distribution

LOD ≤ 0.5% ∼ N (0.2, 0.05)
Total Impurities ≤ 0.5% ∼ N (0.1, 0.02)
Solv1 ≤ 0.3% ∼ N (0.1, 0.02)
Solv2 ≤ 0.3% ∼ N (0.1, 0.02)
Solv3 ≤ 0.08% ∼ N (0.02, 0.005)

INITIAL
DISTRIBUTIONS
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CASE STUDY 2

INITIAL
DISTRIBUTIONS
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CASE STUDY 2

INITIAL
DISTRIBUTIONS
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CASE STUDY 2

Percentage within limits (Initial):    12.44
Percentage outside limits (Initial):  87.56

Cp (Initial):  ∼ 0.40
Cpk (Initial):  - 0.97

 Conducting a Monte Carlo simulation in R we get the following:
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CASE STUDY 2

Spearman Rank Correlation with Assay

Assay              LOD Total Imp.            Solv1            Solv2            Solv3 
1.00 -0.04 -0.07      -0.84 0.50 0.17

Strong negative
correlation

Strong positive
correlation

Weak
correlation

Weak
correlation

Weak
correlation
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Case Study 2 ADJUSTED
DISTRIBUTIONS

Since Solv1 is negatively correlated, it 
has been considered a distribution 
that focuses on lower values.
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Case Study 2

ADJUSTED
DISTRIBUTIONS

Since Solv2 is positively 
correlated, it has been 
considered a distribution 
that focuses on higher 
values.
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CASE STUDY 2

 Let’s now estimate Assay based on the already established relationship, i.e.:

Assay = 101.255 – (4.647 × LOD) – (22.58 × Total Impurities) – (210.4 × Solv1) + (125.8 × Solv2) + 
(171.0 × Solv3)

 But using what follows :

Spec. limits Distribution

LOD ≤ 0.5% ∼ N (0.2, 0.05)
Total Impurities ≤ 0.5% ∼ N (0.1, 0.02)
Solv1 ≤ 0.3% ∼ N (0.08, 0.01)
Solv2 ≤ 0.3% ∼ N (0.12, 0.01)
Solv3 ≤ 0.08% ∼ N (0.02, 0.005)

ADJUSTED
DISTRIBUTIONS
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CASE STUDY 2

Percentage within limits (Adjusted):    54.49
Percentage outside limits (Adjusted):  45.51

Cp (Adjusted):  0.75
Cpk (Adjusted):  0.65
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CASE STUDY 3 :
a micronization process
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CASE STUDY 3

 Let’s consider the micronization: a pharmaceutical process which is crucial for 
achieving desired particle sizes, particularly for enhancing the dissolution rates and 
bioavailability of APIs .

 Many factors can influence the particle size during the micronization process in a jet 
mill, e.g.:
o Feed Rate,
o Air Pressure
o Temperature and Humidity
o Initial Particle Size Distribution and Hardness 
o Nozzle design, etc.
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CASE STUDY 3

 Suppose we have extracted from pilot studies data of a given API a hypothetical
transfer function that relates the particle size Y to the input variables feed rate X1 , air 
pressure X2 and relative humidity X3  as follows:

Y = 50 – 1.5 X1 – 0.5 X2 + 0.3 X3 + 0.005X1X2 + ϵ

main effects interaction term
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CASE STUDY 3

Explanation of Terms:

• X1 : Feed rate (e.g., in kg/h)

• X2 : Air pressure (e.g., in psi)

• X3 : Relative Humidity (e.g., in %)

• Y : Particle size (e.g., in microns)
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CASE STUDY 3

 The main feature of a Monte Carlo simulation is that it uses random samples (in this 
case the input variables X1 , X2  and X3 ) to explore the outcomes of a process or model (in 
this case, the particle size represented by the Y variable).

 This returns a distribution of Y, which will allow us to assess the impact of variability in 
the input parameters on the particle size.

 Using optimization techniques, we can then find a combination of input variables that 
would optimize (in this case maximize) the output variable (Y).
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CASE STUDY 3

 Let’s start with the relationship that correlates the output (particle size) to the input 
variables (Feed rate, Air pressure, Humidity, etc.):

Y = 50 – 1.5 X1 – 0.5 X2  + 0.1 X3  + 0.005X1X2  + ϵ

 and assume that:

Spec. Limits Distribution

X1 Feed rate 5-15 kg/h ∼ Unif (5, 15)  
X2 Air pressure (psi) 50 – 100 psi ∼ Unif (50, 100)
X3 Relative Humidity (%) 20 – 80 % ∼ Unif (20, 80 ) 
ϵ Random error term ∼ N (0, 5) 

INITIAL
DISTRIBUTIONS
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CASE STUDY 3

INITIAL
DISTRIBUTIONS
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CASE STUDY 3

INITIAL
DISTRIBUTIONS
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CASE STUDY 3

 Conducting the Monte Carlo simulation based on the transfer function seen before and 
on the distributions of the input variables (X1, X2, X3) just illustrated, we get:
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CASE STUDY 3

At this point:

 an objective function is defined that calculates the percentage of particles below 10 
microns given a set of values for X1, X2 and X3.

 an optimization is then conducted that considers finding the values of X1, X2 and X3
which minimize the objective function (and therefore maximize the percentage of 
particles under 10 microns) within the specified limits.

 this leads to the following optimized parameters:

X1 = 10.0      X2 = 74.8       X3 = 50.0
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CASE STUDY 3

 A Monte Carlo simulation based on the transfer function and the optimized 
parameters leads to the following:

Particles < 10 microns
Before optimization After optimization

65.32% 77.3%
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CASE STUDY 3

 It is clear that, as a result of parameters optimization (conducted using the 
optimx R package – version 2023-10.21):

o the center position of the histogram has moved to a slightly lower value 
(∼ 6.2 µm) than before the optimization (∼ 6.4 µm) and

o the percentage of particles smaller than 10 microns increased by more 
than 10%.

J. C. Nash, R. Varadhan, Unifying Optimization Algorithms to Aid Software System Users: optimx for R, Journal of 
Statistical Software, Vol. 43, Issue 9 (2011) pp. 1–14
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CASE STUDY 4 :
analytical method robustness
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CASE STUDY 4

 Suppose that a QC laboratory wants to evaluate a given HPLC method for 

measuring the concentration of an active pharmaceutical ingredient (API) in a drug 

product. 

 Monte Carlo simulations can help in studying the analytical method by accounting 

for variability in column temperature and flow rate, which can affect the 

measurement accuracy.

In other words, the Monte Carlo simulations can “model” the variability in 

measurements due to factors like column temperature and flow rate variability. 
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CASE STUDY 4

Suppose that we have:

 Column temperature: Normally distributed around 30°C with a standard 
deviation of 1°C.

 Flow rate: Normally distributed around 1 mL/min with a standard deviation of 
0.05 mL/min.
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CASE STUDY 4

 Each simulation run calculates the API concentration, and the output is a 
distribution of measured concentrations for a nominally 100 mg/mL solution.

 The results could “validate” the method by demonstrating its robustness across 
the simulated conditions, with 95% of the results within ±2% of the nominal 
concentration.
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CASE STUDY 4

 Suppose the measured concentration C is nominally 100 mg/mL but varies with 
temperature and flow rate due to their effects on the separation efficiency and 
detection sensitivity according to the following hypothetical transfer function:

C  =  100 +  a x ∆T +   b × ∆F

where:

o C is the measured API concentration in mg/mL

o ΔT is the deviation of the column temperature from its nominal value (30°C)

o ΔF is the deviation of the flow rate from its nominal value (1 mL/min)
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CASE STUDY 4

o a and b are coefficients representing the sensitivity of the measured concentration 
to changes in temperature and flow rate, respectively. 

For the purposes of this example, let's assume:

a= −0.2 mg/mL/°C 

b= 50 mg/mL/(mL/min)

to illustrate the concept.

Conducting a Monte Carlo simulation in R based on previous transfer function and 
operative conditions leads to:
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CASE STUDY 4

Percentage of results within ±2% of the nominal concentration: 57.68 %
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CASE STUDY 4

What does this simulation tell us and why is it useful ?

 API Concentrations (C) vs. Temperature Variation (∆T): This scatterplot shows how 
the changes in temperature from the nominal value (30°C) affect the concentration of 
the API measured. Given the breadth of the spread in the concentration 
measurements as temperature varies, which seems relatively wide, it might suggest 
some degree of variability introduced by temperature changes, even if it's not a direct 
linear or clear relationship.
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CASE STUDY 4

What does this simulation tell us and why is it useful ?

 API Concentrations (C) vs. Flow Rate Variation (∆F): This scatter plot illustrates how 
the concentrations change with deviations in flow rate from the nominal (1 mL/min). 
The positive trend line indicates that there's a systematic change in the measured 
concentration with variations in flow rate. This could be a cause for concern as it 
suggests that the method's measurements are sensitive to the flow rate and that the 
flow rate must be precisely controlled.
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CASE STUDY 4

What does this simulation tell us and why is it useful ?

 Variability: The result indicates that approximately 57.68% of the simulated 
measurements are within the range of 98 mg/mL to 102 mg/mL (given a nominal 
concentration of 100 mg/mL). This suggests a low level of precision of the method 
under the simulated variations of temperature and flow rate.

 Method Performance: The fact that a significant portion of the results (42.32%) are 
outside the ±2% range could point to a need for improvement in the method's 
performance or more stringent control of the operational parameters.
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CASE STUDY 4

What does this simulation tell us and why is it useful ?

 Robustness Concerns: A robust analytical method would produce a higher percentage 
of results within the acceptable range. In this context, the outcome suggests that the 
method's robustness might be insufficient for routine use without further 
optimization.
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CASE STUDY 5 :
stability analysis
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CASE STUDY 5

 The stability of pharmaceutical products under various environmental conditions 
(temperature, humidity, light, etc.) can be predicted using Monte Carlo simulations. 

 By simulating the degradation pathways and rates under different conditions, 
companies can better design stability studies and predict shelf life, ensuring that the 
product meets quality standards over its intended lifespan.
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CASE STUDY 5

 The degradation of many pharmaceutical compounds can often be described by first-
order kinetics, where the rate of degradation is proportional to the concentration of 
the drug that remains.
The rate of degradation can be expressed by the first-order kinetics equation:

−
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  = 𝑘𝑘𝑑𝑑

where:
• C is the concentration of the drug
• k is the rate constant for the degradation process
• t is time
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CASE STUDY 5

The solution to this differential equation gives the concentration of the drug at any time t:

𝑑𝑑 𝑑𝑑  =  𝑑𝑑0  ×  𝑒𝑒−𝑘𝑘𝑘𝑘

where: 

𝑑𝑑0 is the initial concentration of the drug

e is the base of the natural logarithm
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CASE STUDY 5

 The rate constant k can increase with temperature and humidity.

 The Arrhenius equation provides a way to model the effect of temperature on the rate 
constant:

𝑘𝑘 = 𝐴𝐴 × 𝑒𝑒 ⁄−𝐸𝐸𝑎𝑎 𝑅𝑅𝑅𝑅

where:

o A is a pre-exponential factor

o 𝐸𝐸𝑎𝑎 is the activation energy

o R is the gas constant

o T is the temperature in Kelvin
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CASE STUDY 5

For simplicity, let's model the increase in k with humidity (H) linearly, assuming a baseline 
rate constant k0 at a specific temperature and humidity:

𝑘𝑘 =  𝑘𝑘0  × 1 +  𝛼𝛼 𝑇𝑇 −  𝑇𝑇0 +  𝛽𝛽 𝐻𝐻 −  𝐻𝐻0  

where:

 T0 and H0 are reference temperature and humidity conditions

 α and β are coefficients that determine how much k changes with temperature and 
humidity.
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CASE STUDY 5

 The coefficients k0 , α, and β represent the baseline rate constant and how sensitive the 
degradation rate is to changes in temperature and humidity, respectively. 

 The choices for these values are critical and should ideally be based on experimental 
data. 

 Temperature and humidity can be modeled with normal distributions to reflect natural 
variability in storage conditions. The means and standard deviations of:

o mean = 25°C, SD = 5°C for temperature and
o mean = 60%, SD = 10% for humidity
are illustrative.
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CASE STUDY 5

 A possible criterion for estimating shelf life could be based on whether the drug retains 
at least 90% of its original potency.

 The use of Monte Carlo simulation to assess the percentage of scenarios where the 
drug maintains the required potency allows for the consideration of the combined 
effects of variability in temperature and humidity. This approach provides a probabilistic 
assessment of shelf life rather than a single deterministic outcome, capturing the 
uncertainty inherent in real storage conditions.
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CASE STUDY 5

 These choices allow us to build a simplified, but illustrative, example of how Monte 
Carlo simulations can be applied in stability studies for pharmaceutical products.

 It is clear that in real applications, the model parameters (k0,α, β ) should be validated 
against experimental data from accelerated stability studies. This ensures that the 
model accurately reflects the stability profile of the drug.
In general, other adjustments may also be necessary.
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CASE STUDY 5

 A Monte Carlo simulation can be run using the following hypothetical values for model 
parameters:

k0 0.1 Baseline rate constant per month at reference conditions

α 0.02 Temperature coefficient
β 0.01 Humidity coefficient 
T0 25°C Reference temperature (°C)
H0 60% Reference humidity (%)
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CASE STUDY 5

Such a simulation leads to an average  remaining potency after 12 months of 30% which is very low 
or, at least, far below a minimum of 90%.
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CASE STUDY 5

This result, which might initially seem discouraging, instead highlights possible areas for 
improvement of the model such as, for example:

1. Parameters Optimization: Ensure that the baseline degradation rate (k0) and the 
sensitivity coefficients (α and β) are optimized based on experimental stability studies 
under controlled conditions. These values should reflect the actual behavior of the drug 
substance or product.
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CASE STUDY 5

2. Extended Range of Conditions: Explore a broader range of storage conditions, including 
lower temperatures or humidity levels that might be more conducive to maintaining 
drug potency. This could help identify more precise storage recommendations.

3. Model Complexity: Introduce more complexity into the model if necessary. For 
example, consider nonlinear effects of temperature and humidity on the degradation 
rate or include other factors such as light exposure or packaging type.
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CASE STUDY 5

4. Experimental Validation: Compare the model predictions with actual experimental 
data from accelerated stability studies. This step is crucial for validating the model and 
adjusting it to better reflect real-world conditions.
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CONCLUSIONS
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CONCLUSIONS

 Monte Carlo method is a powerful tool for simulating and predicting outcomes in 
pharmaceutical processes.

 Its field of applicability is much broader than shown so far and can cover aspects such as:

o Regulatory Compliance and Submission (e.g., simulating the impact of variability in 
critical process parameters on the quality attributes of the final product can) 
demonstrate control over the manufacturing process and the consistency of the 
product quality)

o Risk Assessment and Management (e.g., evaluation of the risk of impurity 
contamination during manufacturing)

and much more.
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CONCLUSIONS

 These simulations help understand variability and the risk associated with it, thus 
facilitating better decision making.

 These methods bridge theoretical statistical concepts with practical applications, 
enhancing both efficiency and accuracy in the pharmaceutical industry.

 Monte Carlo simulation is a methodology that certainly deserves to be used for the 
powerful practical impact it has on both drug development processes and their 
management over time.
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