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From 3 Batches to Con�nuous Confidence: 
How Monte Carlo & Bootstrap Turn Process Valida�on into Predic�ve Quality 

 

1. INTRODUCTION 

Process valida�on has evolved – both in regulatory intent and in sta�s�cal prac�ce – from a one-

off, three-batch exercise into a con�nuous, lifecycle discipline. Current guidance from the U.S. 

Food and Drug Administra�on (FDA, 2011) and the Interna�onal Council for Harmonisa�on (ICH) 

– in par�cular Q8 Pharmaceutical Development, Q9 Quality Risk Management, Q10 

Pharmaceutical Quality System and the post-approval framework Q12 – makes this explicit: the 

manufacturer must generate and maintain scien�fic evidence that the process is capable of, and 

con�nues to, deliver a product that meets its predefined quality atributes. 

The lifecycle view divides process valida�on into three sequen�al stages: 

• Stage 1 – Process Design corresponds to Q8: cri�cal quality atributes (CQAs) and cri�cal 
process parameters (CPPs) are iden�fied, prior knowledge and small-scale experiments are 

assembled, and a control strategy is dra�ed. 

• Stage 2 – Process Performance Qualification (PPQ) is the classical “conformance-batch” 
moment. Here the FDA and ICH Q7 s�ll refer to “three consecu�ve successful produc�on 
batches” as a common benchmark, although both documents allow the number to rise or 

fall according to process complexity and accumulated knowledge. 

• Stage 3 – Continued Process Verification (CPV), anchored in Q10 and Q12, turns the focus 
from poten�al capability to demonstrated capability under rou�ne manufacture. 

The sta�s�cal tension is greatest at Stage 2, precisely because the eviden�ary burden is high while 

the data set is small. A sample size of n=3 places tradi�onal normal-theory tools on shaky ground. 

The point es�mate of the standard devia�on relies on a χ² distribu�on with just one degree of 

freedom; its coefficient of varia�on exceeds 70 %. Classical capability indices such as Cpk inherit 

that instability, yielding confidence limits so wide that any numerical conclusion becomes 

suspect. Confidence intervals for a propor�on fare no beter: with zero failures in three atempts, 

the exact 95 % upper bound is 64 %, a figure hardly compa�ble with the usual expecta�on of 
“state of control”. 
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It is in this region of too little data that Monte Carlo simula�on [1,2,3] earns its place. If the only 

quan�ta�ve knowledge available is a triplet such as minimum, most-likely and maximum from 

development batches or small-scale studies (ICH Q11 encourages such models), one can express 

that knowledge as a prior probability distribution – triangular when a single most-likely value is 

credible, or uniform when no preference within the range is jus�fied. Repeatedly sampling from 

that prior, propaga�ng it through the specifica�on limits and summarizing the resul�ng outputs, 

yields an approximate sampling distribu�on for any sta�s�c of interest: the propor�on expected 

out-of-specifica�on, a provisional Cpk, even a predic�ve interval for the next batch. This is the 

Monte Carlo approximation: replacing an unworkable analy�c calcula�on with the empirical 

mean (and quan�les) of many simulated replica�ons. 

Once commercial manufacture begins, the sta�s�cal landscape changes. Data accumulate lot 

a�er lot; assump�ons about the underlying distribu�on can now be tested, not merely asserted. 

The non-parametric bootstrap [3,4,5] – resampling with replacement from the observed data – 
offers a direct, assump�on-lite way to atach confidence limits to capability indices, tail 

probabili�es or any user-defined metric. Because each bootstrap replicate mimics “another year 

of produc�on drawn from the same process”, its accuracy improves automa�cally with every new 
batch, embodying the CPV principle that evidence of control should strengthen over �me. When 

a parametric model such as the log-normal passes formal goodness-of-fit tests, a parametric 

bootstrap [3,4,5] refines the same idea: draw resamples from the fited model to obtain �ghter 

intervals while preserving the analy�c traceability regulators expect. 

Simula�on and resampling therefore act as bridges across the data gap that separates Stage 2 

from Stage 3. They allow quality-by-design thinking – explicit risk quan�fica�on, scenario analysis, 

uncertainty repor�ng – to be prac�sed from the first valida�on batch and refreshed con�nuously 

therea�er. The approach is fully consonant with ICH Q9(R1), which recommends quan�ta�ve risk 

assessment throughout the lifecycle, and with the alterna�ve pathway of Con�nuous Process 

Verifica�on described in both ICH Q8(R2) and FDA (2011): if an on-line or at-line monitoring 

system captures every lot, simula�on plus bootstrap can replace the classical three-batch 

qualifica�on altogether. 

The remainder of this ar�cle is organized into two case studies. 

The first revisits the ini�al PPQ scenario where only three produc�on-scale lots are available. 

Here, it will be shown, using R code, how a triangular, a uniform, and a conserva�vely 

parameterized normal distribu�on translate prior knowledge into numerical es�mates of %OOS 

and provisional Cpk. The regulatory defensibleness of each choice is discussed. 
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The second case study focuses on CPV. Bootstrapping is used to calculate bias-corrected 

confidence intervals for Cpk and to update the predicted failure risk a�er each addi�onal lot. 

Special aten�on is paid to documen�ng assump�ons and integra�ng simula�on output with 

rou�ne control chart signals, a requirement that comes directly from US cGMP §211.100(a), 

which mandates writen manufacturing controls to ensure iden�ty, strength, quality, and purity. 

By the end of the discussion, the reader will be armed with a step-by-step, regulator-aligned 

workflow for leveraging Monte Carlo methods and bootstrap resampling at every stage of the 

process valida�on lifecycle: from the fragile evidence of three qualifica�on batches to the 

increasing burden of con�nuous process verifica�on. 

Before examining the two case studies, it is worth briefly summarizing the fundamental role that 

simula�on methods play in this area. 

 

2. SIMULATION METHODS: TURNING IGNORANCE INTO QUANTIFIED RISK [6,7,8] 

Process engineers and quality scien�sts are rarely allowed the luxury of large and clean data sets. 

Specifica�ons must be writen, acceptance criteria jus�fied, and regulatory commitments made 

when only fragments of evidence exist—perhaps three valida�on batches, perhaps a handful of 
laboratory spikes, perhaps nothing more than a min–max range agreed during development. 

Simula�on is the discipline that turns that litle informa�on into numbers we can interrogate, 

defend, and improve. 

 

2.1 WHAT “SIMULATION” MEANS IN A VALIDATION CONTEXT 

At its heart simula�on consists of a three-step loop: 

1. Build a credible process model.  

Encode what is known (e.g., specifica�on window, target set-point, ranges from small-scale 

studies) and what is s�ll uncertain (e.g., run-to-run variability) as a probability model. 

2. Let the computer play out that model many �mes.  

Pseudo-random sampling generates thousands of virtual batches or measurements that 

obey the model’s rules. 

3. Summarize the virtual evidence.  

The frac�on of simulated lots that fail, the distribu�on of simulated Cpk values, the 95 % 

worst-case HPLC assay—these become numerical, inspec�on-ready statements of risk. 
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Because the model can be re-run instantly with new inputs, management can see immediately 

which assump�ons drive the risk and how strongly each proposed change—�ghter control of a 

cri�cal parameter, a wider design space, more frequent sampling—reduces the probability of 

failure. In Douglas W. Hubbard’s terms [9], quan�fica�on brings clarity by exposing consequences: 

when we atach explicit probabili�es to every assump�on, vague expressions such as “very 

unlikely” or “�ght process” turn into measurable risk. 

 

2.2 MONTE CARLO SIMULATION: THE BACKBONE [1-3,8] 

Monte Carlo is the broad family of techniques in which the underlying probability model is 

analytically intractable but easy to sample. The steps are conceptually simple: 

1. Draw a pseudo-random sample x1, x2, …, xn from the chosen distribu�on (triangular, uniform, 

log-normal, etc.). 

2. Compute the sta�s�cs of interest g(x): 

𝑔𝑔(𝑥𝑥)  = 1{𝑥𝑥 < 𝐿𝐿𝐿𝐿𝐿𝐿 ⋁𝑥𝑥 > 𝑈𝑈𝐿𝐿𝐿𝐿} for a failure indicator, 

 or 

𝑔𝑔 (𝐱𝐱) =  𝑚𝑚𝑚𝑚𝑚𝑚(𝑈𝑈𝑈𝑈𝑈𝑈− �̅�𝑥,   �̅�𝑥−𝑈𝑈𝑈𝑈𝑈𝑈)
3 𝑠𝑠

 for Cpk 

3. Repeat steps 1-2 thousand �mes and average the results. 

Because the Monte Carlo sampling error declines propor�onally to 1 √𝑛𝑛⁄ , doubling the number 

of replicates lowers that error by about 30 % (a factor of 1 √2⁄ ), while halving it requires roughly 

four �mes as many runs. In prac�ce, running 10 000–20 000 replicates already drives the Monte 

Carlo uncertainty below one percentage point—a resolu�on more than sufficient for most 

valida�on decisions. 

Where Monte Carlo shines 

• Tiny samples. With only three PPQ batches, es�ma�ng the long-run frac�on of out-of-spec 
lots analy�cally is hopeless, simula�ng a triangular prior converts subjec�ve ranges into 

explicit tail probabili�es. 

• Complex feed-through. When an impurity response is a non-linear func�on of temperature, 
pH, and residence �me, Monte Carlo can sample the joint space and propagate both 

parameter and model uncertainty. 
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2.3 RESAMPLING AND THE BOOTSTRAP: LETTING THE DATA SPEAK FOR THEMSELVES [3-5, 10-14] 

Once rou�ne produc�on begins the process can o�en outgrow its ini�al assump�ons: the 

distribu�on may prove skewed, variances may differ from the development es�mate, control-

chart residuals may fail normality tests. Rather than impose a new parametric model, we can stay 

faithful to the experimental data we actually have by resampling. 

• In the non-parametric bootstrap we draw, with replacement, new samples of size n directly 

from the observed lot summaries and recompute the sta�s�c. This mimics “re-running the 

last n lots” under the premise that tomorrow will resemble yesterday on average. 

• In the parametric bootstrap we first fit a distribu�on (normal, log-normal, Weibull…). We 

then sample from that fited model so that each replicate reflects both sampling variability 

and parameter es�ma�on error. 

Because each resample is as large as the real data set, the bootstrap inherits the peculiarity of the 
process—including skewness, occasional outliers, or excess kurtosis—without forcing them into 

a normal straitjacket. Confidence intervals derived from the bootstrap therefore remain accurate 

even when textbook formulas fail. 

Simula�on methods are therefore the quan�ta�ve backbone of modern risk-based valida�on. 

Monte Carlo translates scarce early knowledge into predic�ve risk; the bootstrap transforms 

accumula�ng shop-floor evidence into ever �ghter assurance. Together they enable a valida�on 

strategy that is transparent, adap�ve, and fully aligned with the life-cycle expecta�ons of ICH Q8, 
Q9, Q10 and Q12. 

 

3. CASE STUDY 1 

Let's imagine we have the HPLC assay values (but the discussion can obviously be applied to any 

other Cri�cal Quality Atribute (CQA) or Cri�cal Process Parameter (CPP) of interest) of the first 

three valida�on batches for example of a given Ac�ve Pharmaceu�cal Ingredient (API) and that 

is: 97.2%, 98.4% and 99.4%. 

Knowing that the specifica�on limits for the assay are LSL = 97.2 % and USL = 99.6 %, we wish to 

an�cipate how the process might behave once it moves from qualifica�on into rou�ne 

manufacture, even though only three PPQ batches are currently available. 

When analy�cal formulae are out of reach, the Monte Carlo method is the most natural way to 

turn a small fragment of evidence into a quan�ta�ve risk statement. 
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Monte Carlo is appropriate because it: 

1. Chooses a prior distribu�on that embodies what litle we already know (e.g., the observed 

minimum, a target set-point, the observed maximum). 

2. Generates thousands of pseudo-random batches from that prior, each obeying the same 

specifica�on window that future real batches must obey. 

3. Summarizes the virtual evidence through: 

o the propor�on of simulated lots that fall outside 97.2–99.6 % – a direct es�mate of the 

long-run %OOS; 

o a provisional capability index Cpk, complete with its Monte Carlo error band, which 

quan�fies both centering and spread under current knowledge; 

o tolerance or predic�on limits (e.g., the 95 % worst-case assay) that tell us how low or 

high a result we should be prepared to see before alarms need to be raised. 

Repeated sampling from the prior, therefore converts a three-point snapshot into a full predic�ve 
distribu�on of future assays. In prac�cal terms, we may conclude something like: 

“Given today’s information there is only about a 1 % chance that the very next commercial lot will 

breach specifications, and with 95 % credibility the lowest assay we should expect over the coming 
year is 97.0 %.” 

Such quan�ta�ve wording—rooted in simula�on rather than vague adjec�ves—meets the risk-

management expecta�ons of ICH Q9 and provides inspec�on-ready evidence of a process 

“capable in principle.” 
 
Choosing a prior when only three values exist 

With only three numbers it is impossible to statistically identify the most suitable distribu�on; 

the selec�on must be based on qualita�ve characteris�cs such as those listed in Table 1 below. 

Table 1 
Candidate prior Informa�on required Typical effect on simulated risk 

Uniform  
(min–max) 

Only extremes 
Treats every value in the range as equally 
likely; o�en over-states variability and 
yields the lowest Cpk. 

Triangular  
(min–mode–max) 

Extremes + 
credible set-point 

Concentrates probability near the set-
point while retaining finite tails; gives a 
middle-of-the-road risk es�mate. 

Normal 
(σ ≈ range/6) 

Extremes +  
symmetry assump�on 

Easiest to link to Cp/Cpk formulas but 
posits infinite tails; can under-state risk if 
physical limits exist. 
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The advantages and cri�cal aspects of the three candidate distribu�ons are summarized in Table 2 

which completes the informa�on in Table 1. 

Table 2 

Candidate 
prior 

Informa�on 
required 

Advantages Cri�cal issues 

Uniform min, max 

Zero hypotheses on the 
shape; maximum cau�on if  
where the produc�on is 
concentrated it is 
unknown. 

Pessimis�c: assigns the same 
probability to the en�re range ⇒ 
tends to overes�mate the risk of 
OOS. 

Triangular 
min, mode, max 

(all provided) 

• Takes into account the 
“most likely” value. 
• Has finite tails (does not 
allow < min or > max assay 
values). 

Assumes linear density; if the true 
profile is flater or more curved, it 
may over/underes�mate tails. 

Normal  
(or Gaussian) 

mean ≈ mode, σ 
≈ (max–min)/6 

(heuris�c) 

Convenient model for 
capability (Cp, Cpk). 

Infinite tails: with 3 data there is no 
evidence that assay values < min 
cannot appear; there is a risk of 
underes�ma�ng the risk if the real 
process has physical limits. 

 
The Monte Carlo approach remains the same, regardless of the prior distribu�on chosen; only 

the inputs differ. Below, we simulate all three op�ons side by side, quan�fy their %OOS and Cpk, 
and discuss which prior is more defensible in the PPQ phase. 

Using the simple R script: mc_prevalida�on_dist_compare.R, available in my GitHub repository 

at htps://github.com/rbonfichi/process-valida�on-simula�on it is possible to generate, star�ng 

from the available data, the three test distribu�ons (i.e., Triangular, Uniform, Normal “heuris�c”) 
and, for each one, obtain: 

1. Descrip�ve sta�s�cs (summary()) 

2. Percentage out of specifica�on compared to LSL and USL 

3. “Theore�cal” Cpk calculated on simulated values 

4. A histogram with specifica�on limits. 

The graphs and numerical results obtained by running the script 
mc_prevalida�on_dist_compare.R are reported below in Figures 1-3 and Table 3: 

  

https://github.com/rbonfichi/process-validation-simulation
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Figure 1: Triangular prior distribu�on of 100 000 Monte Carlo assay values with spec limits 

 
 
Figure 2: Uniform prior distribu�on of 100 000 Monte Carlo assay values with spec limits 

 
 
Figure 3: Normal “range / 6 σ” prior distribu�on of Monte Carlo assay values with spec limits 
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Table 3 
===== COMPARATIVE RESULTS ===== 

--- Triangular Distribu�on --- 

    Min.  1st Qu. Median Mean  3rd Qu.     Max.  
   97.21    98.01    98.35    98.33    98.66    99.40  

 Simulated %OOS : 0.000 % 
 Simulated Cpk : 0.841 

 
--- Uniform Distribu�on --- 

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
 97.20    97.75    98.30    98.30    98.85    99.40  
  Simulated % OOS : 0.000 % 
 Simulated Cpk : 0.577 

 
--- Normal Distribu�on --- 

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  
  96.79 98.15 98.40 98.40 98.65 99.94 
 Simulated % OOS: 0.130 % 
 Simulated Cpk: 1.085 

 
The simula�on results obtained with the three candidate distribu�ons—condensed numerically 
in Table 3—lead to the following observa�ons: 

• Uniform Distribu�on: Uniform distribu�on yields the same 0% OOS as triangular distribu�on 
but gives the lowest Cpk, i.e., a pessimis�c capability es�mates. Because the simulated range 
97.2–99.4 lies wholly inside the spec window (i.e., 97.2-99.6), no failures can occur; however, 
the uniform prior assigns equal weight to extreme values, infla�ng the variance and 
depressing Cpk. 

• Normal Distribu�on: Because a normal curve has infinite tails, a small frac�on of simulated 
values extends beyond the 97.2 – 99.6 % window (see, for instance, the value of 99.94% 
reported in Table 3), yielding an es�mated 0.13 % OOS (versus 0 % for the bounded priors). 
Those same long but light tails also leave the bulk of the distribu�on well centered, so the 
model produces a higher Cpk even as it predicts a non-zero failure rate. 

• Triangular Distribu�on: lies in the middle and is usually the most “reasonable” es�mate 
when we have an idea of the central value which does not necessarily have to be the mode, 
but it is sufficient that you can establish that it is the “most likely value”. 
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However, if we want to proceed rigorously, in an ini�al phase like this we can prac�cally iden�fy 
three "typical situa�ons" and precisely: 

1. Purely exploratory case (only three numbers and no extra knowledge of the process) 

In this case, it is advisable to use the uniform distribu�on between the minimum and 
maximum values, as it is the most neutral and conserva�ve assump�on. Furthermore, unlike 
the triangular distribu�on, for example, it does not require knowledge of a mode or, in any 
case, of a “most likely value”. 

2. Case in which there is some knowledge of the process 

In this case, it is advisable to use the triangular distribu�on with: 

a = minimum observed value, 

b = maximum observed value 

c = target value (even if c is not observed). 

Clearly, in the protocol it must be explained that c represents the expected set-point and not 
the sample mode. 

3. Case in which we want to quan�fy the uncertainty. 

In this case, it is advisable to consider the batches as representa�ve of the en�re data 
popula�on and es�mate their mean μ and standard devia�on σ. At this point, one can proceed 
using a “wide” normal distribu�on (large σ) or by switching directly to the parametric 
bootstrap if one has ≥ 10 batches 

 
In a short summary: 
 
Key Points – Case Study 1 

• Monte Carlo simula�on compensates for the sta�s�cal fragility of a three-batch PPQ data set. 

• Comparing triangular, uniform, and normal priors clarifies how assump�ons drive %OOS and 

 Cpk. 

• The accompanying R script lets readers reproduce every figure and table. 

• A triangular prior is usually the most defensible when a process target (set-point) is known. 

 

4. CASE STUDY 2 

In this second example, we enter Con�nuous Process Verifica�on. Imagine that twenty 

commercial lots have been produced a�er the ini�al three PPQ- conformance batches, for a total 

of 23 lots. Rather than imposing a triangular or normal model, we treat the lot values themselves 

as an empirical distribu�on and use a 5000-fold nonparametric bootstrap. This provides a bias-

corrected 95% confidence interval for Cpk and an upper bound for the actual percentage out of 

specifica�on. The resamples themselves provide a predic�ve band that can be overlaid on the 
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rou�ne X-bar chart, providing a single plot that marries the classical control limits and the 

uncertainty of modern resampling. 

As an example, let’s assume that we have: 

• HPLC assay values (%) for 3 PPQ conformance batches: 98.22, 98.21 and 98.61. 

• HPLC assay values (%) for the following 20 commercial lots: 98.52, 98.67, 98.38, 98.25, 98.23, 

98.82, 98.36, 98.81, 98.49, 98.64, 98.74, 98.34, 98.91, 98.68, 99.40, 98.43, 98.00, 98.36, 

98.09, 98.38. 

Each data point represents a single assay release value obtained for that lot. Since the process 

has been shown to be homogeneous within-lot level, this value is considered to be fully 

representa�ve of the lot assay distribu�on. The bootstrap therefore quan�fies lot-to-lot 

variability; within-lot variability is handled separately in rou�ne analy�cal method valida�on. 

Considering that LSL = 97.2% and USL = 99.6% the distribu�on of the above values is well 
illustrated by the histogram in Figure 4 below. 

Figure 4: Histogram of Case Study 2 data 
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Using the R script bootstrap_cpv_update.R (available in my GitHub repository at 

htps://github.com/rbonfichi/process-valida�on-simula�on), it can be generated a bootstrap 

capability update from 23 lot-level assay results. The script reports five key sta�s�cs: 

1. Cpk point es�mate – the capability index computed from the current lot values; a single-

number summary of centring and spread rela�ve to the specifica�on limits. Values < 1 usually 

trigger inves�ga�on, whereas ≥ 1.33 are o�en deemed “capable.” 

2. Cpk 95 % BCa confidence interval – bias-corrected and accelerated (BCa) bootstrap limits 

around the point es�mate. This interval quan�fies sta�s�cal uncertainty when the lot count 

is s�ll modest. A lower bound < 1 warns that true capability may be inadequate even if the 

point es�mate looks acceptable. 

3. Observed % OOS – the propor�on of lots that actually breached the LSL or USL; immediate 

evidence of out-of-spec behavior. Any non-zero value triggers a devia�on inves�ga�on. 

4. Bootstrap 95 % upper bound on % OOS – an upper confidence limit for the long-run failure 
rate, obtained by resampling. It serves as an early-warning metric, highligh�ng risk before 

mul�ple real failures occur. An upper bound approaching the corporate or regulatory 

tolerance (e.g., ≤ 0.1 %) prompts preven�ve ac�on. 

5. Exact Clopper–Pearson upper bound – the classical 95 % binomial limit for k failures in n lots. 

This conserva�ve reference does not rely on bootstrap assump�ons and is especially useful 

when the bootstrap interval collapses to 0 % (all lots in-spec), providing a transparent worst-

case figure for audit reports. 

Table 4 reports the numerical output generated by the script bootstrap_cpv_update.R and Figure 

5 visualize the bootstrap distribu�on of Cpk. 

 Table 4  
Bootstrap capability update (n = 23 lots) 

Metric Value 

 Point Cpk 1.17 

 95 % BCa CI 0.68 – 1.68 

 Observed %OOS 0 % 

 Upper 95 % bootstrap bound 0 % 

 Upper 95 % exact (Clopper–Pearson) 14.8 % 

  

https://github.com/rbonfichi/process-validation-simulation
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The numbers in Table 4 tell us the following: 

• A point es�mate of Cpk=1.17 looks sa�sfactory, yet the lower confidence limit (0.68) shows 

that true capability could s�ll be inadequate; more data are needed before concluding the 

process is in a state of control. 

• Because every resample stayed within the 97.2–99.6 % specifica�on window, the bootstrap 

places a 0 % upper bound on the long-run failure rate. The distribu�on-free Clopper–Pearson 

method is a useful fallback; its 14.8 % limit reminds us how conserva�ve classical binomial 

theory can be at small n. 

• Adding roughly ten addi�onal lots (raising the data set from 23 to ≈ 33) will narrow the BCa 

interval for Cpk and lower the exact binomial upper bound by about 25 %. For example, zero 

failures in 33 lots lowers the Clopper–Pearson upper bound from 14.8 % to 9.0 %, while the 

BCa limits on Cpk contract from 0.68–1.68 to roughly 0.80–1.55. That reduc�on in 

uncertainty is the sta�s�cal signal for the next CPV review: if the updated lower limit of Cpk 
is s�ll < 1 —or if the binomial bound is s�ll above the company tolerance—inves�ga�ve or 

preven�ve ac�ons should be considered. 

This interval-shrinking argument presumes the process remains sta�onary. If the next ten 
lots show a trend or step change, both the bootstrap limits and the control-chart rules will 

reflect that shi�, and the focus moves from interval width to root-cause analysis. 

 

Figure 5: Bootstrap distribu�on of 𝐶𝐶𝐶𝐶𝐶𝐶 (5 000 resamples, 𝑛𝑛 = 23 lots). Black dashed line = point 
 es�mate 1.17; blue doted lines = 95 % BCa limits 
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Figure 5 shows the bootstrap distribu�on of Cpk for 23 release assay values. 

The dashed line marks the point es�mate (1.17); doted blue lines show the 95 % BCa limits (0.68, 

1.68). Bars represent 5 000 resampled Cpk values, illustra�ng the uncertainty that remains at this 

stage of CPV. 

Figure 5 illustrates that most of the resampled Cpk values lie between 0.7 and 1.6, reinforcing the 

numerical CI reported in Table 4. 

The choice to use a database consis�ng of the 3 PPQ lots plus 20 other commercial lots (total = 

23) was determined by reasons of convenience. In fact, it is: 

• large enough to allow bootstrapping of the Cpk and a realis�c upper limit %OOS 

• small enough that a single year of produc�on data in most facili�es will resemble the example 

and, according to bootstrap theory, once the lot count reaches roughly 20–30, the BCa limits for 

Cpk setle and therea�er contract at the classical 1 √𝑛𝑛⁄  rate. 
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5. CONCLUSIONS AND OUTLOOK 

The two case studies demonstrate that modern resampling techniques—Monte Carlo simula�on 

in Stage 2 and the bootstrap in Stage 3—do more than fill analy�cal gaps: they redefine what 

“process valida�on” can mean. 

5.1 FROM STATIC SNAPSHOTS TO PREDICTIVE VALIDATION 

Tradi�onal valida�on relies on static sta�s�cs: a point es�mate of Cpk, a single %OOS figure, or 

control-chart limits frozen in �me. 

Such summaries tell us how the process performed yesterday, but they say litle about tomorrow. 

Resampling does not eliminate uncertainty, yet it quan�fies and reduces it to a level where 

informed, data-driven decisions become possible. 

• Monte Carlo simula�on converts the sparse informa�on typical of PPQ (o�en just three lots) 
into an explicit predictive distribution of future assay values. Instead of asser�ng “all three 

lots passed,” we can state, for example, “there is a ≤ 2 % chance that the next lot will be out-

of-spec.” That probability is the language of ICH Q9 risk management, not of mere box-
�cking. 

• Bootstrap resampling turns CPV from a compliance ritual into a con�nuously narrowing 
es�mate of long-term capability. Every addi�onal lot shrinks the bias-corrected interval for 

Cpk at the familiar 1 √𝑛𝑛⁄  rate, giving management an objec�ve trigger for the next review. In 

our 23-lot example the exact binomial upper bound on %OOS falls from 14.8 % to 9 % as soon 
as ten more passing lots are added—evidence-based mo�va�on to keep producing and 

learning. 

 

5.2 WHY THIS MATTERS FOR PHARMACEUTICAL QA? 

Most pharmaceu�cal and chemical-pharmaceu�cal facili�es s�ll monitor processes with 

rudimentary tools: a couple of batch means ploted on sta�c control charts, Cp/Cpk values 

reported without confidence limits, and litle explicit quan�fica�on of forward-looking risk. That 

approach was acceptable when regulators viewed valida�on as a one-off event; it is no longer 

sufficient under the life-cycle paradigm of FDA (2011) and ICH Q8–Q12. 

Monte Carlo and bootstrap techniques: 

• Complement—not replace—classical methods. Control charts remain essen�al for real-�me 

alarms; resampling adds quan�fied risk envelopes around those alarms. 
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• Integrate seamlessly with electronic batch records. Because the algorithms require only 

historical lot metrics, they can be automated and re-run a�er each release without extra 

laboratory work. 

• Speak the language of modern quality risk management. A regulator can immediately act 

on statements such as “upper 95 % bound on long-run failures ≤ 0.10 %” or “probability that 

capability is below 1.0 is 18 %.” 

 

5.3 FUTURE EXTENSIONS 

• Hierarchical (two-level) bootstrap to combine within-lot unit data and lot-to-lot dri�. 

• Parametric or semi-parametric bootstrap when a log-normal or Weibull model passes 

goodness-of-fit tests, yielding even �ghter intervals. 

• Bayesian process capability in which prior knowledge from development is updated 
con�nuously by commercial data—Monte Carlo is then an integral part of the posterior 

computa�on. 

These direc�ons are no longer academic curiosi�es; they are becoming prac�cal as 
manufacturing data move into validated data lakes and as regulators ask for quan�ta�ve evidence 

of ongoing control. 

In summary, resampling methods transform process valida�on from a backward-looking 

cer�fica�on into a forward-looking risk forecast. They allow QA teams to say how sure they are 

that a process will remain capable, what the worst-case failure rate could be, and when the next 

sta�s�cal review is warranted, all while progressively �ghtening those es�mates as new data 

arrive. Implemen�ng the simple R scripts provided here is therefore a first, tangible step toward 

the predic�ve, life-cycle-oriented valida�on strategy envisaged by modern regulatory guidance. 
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