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Multiple Linear Regression: a powerful statistical tool 

to understand and improve APIs manufacturing processes 
 

1. INTRODUCTION 

 

It is known that, over time, all production processes tend to deviate from their initial conditions. 

This happens for the most diverse reasons: 

 changes in materials, personnel, environment, 

 technological improvements, 

 acquisition of production experience, etc. 

Among other things, it is precisely in these changes that the foundations for an improvement of 

the process itself lie. 

This variability in the processes, which often goes unnoticed, is instead well intercepted by the 

data that Quality Control systematically collects for batch release purposes. Furthermore, these 

data also capture very well the interactions between the different analytical parameters that 

normally escape. Now if these data are analyzed with the right tools, they can reveal a great 

deal of the manufacturing processes that generated them. 

This product knowledge is of great practical use to the Company as it allows to: 

 understand which are the parameters that most affect the product quality and how they 

 interact with each other, 

 establish whether the parameters that are controlled are really the ones we need or, instead, 

 which ones would be better to consider, 

 define / improve the product control strategy (as per FDA Guidances on Process Validation 

 and  Quality Metrics, ICH Q8-Q10-Q12, Eudralex Annex 15) based on experimental data 

 and quantitative models rather than speculation, 

 define and graphically represent the design space (ICH Q8) inherent to the production 

 process considered,  

 identify possible ways to improve process performance and scientifically pilot this 

 improvement, 

 mitigate the Regulatory impact in case of changes.  

To extract this knowledge from the data, a powerful tool provided by the Statistical Sciences 

helps, namely the Multiple Regression in its usually most used model, that is the linear one.  
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Multiple Linear Regression (or MLR) is, in fact, the extension of the conventional "simple 

regression" to the case in which the dependent variable (or response, y) is related to several 

independent variables (also called: predictors, regressors or features as in Machine Learning, 

xi) instead of with only one[1]. 

Here below a simplified approach to MLR is used to analyze the release data of an Active 

Pharmaceutical Ingredient (API) of which thirty-one batches have been produced and which 

was initially studied in the first post of this series (i.e., May 9, 2018). On that occasion, the 

focus was on identifying and displaying the correlations between the various variables and the 

organized data structures (or clusters) that may be present. The analysis revealed that at least 

three lots had very different characteristics from the remaining twenty-eight listed in the 

database. 

A different analysis of that same data is described below. Starting from the same database, a 

simple mathematical model is built which allows to highlight which of the variables considered 

independent in this analysis have the most significant influence (alone or jointly) on the variable 

chosen as dependent. 

Thanks to the use of effective graphic representations typical of the DoE (Design of 

Experiments) methodology such as: 

▪ MAIN EFFECTS PLOTS, 

▪ INTERACTION PLOTS and  

▪ CONTOUR PLOTS 

the interactions between the variables involved are easy to understand and therefore to use. 

In practice, here we want to use the "backward" DoE methodology, i.e., instead of designing 

orthogonal experiments and generating data to be analyzed, apply it to existing data to extract 

the information contained therein.  

 

2. EXPERIMENTAL SECTION 

 

Since only numerical data are suitable for calculations, only quantitative variables (i.e., those 

analytical tests whose outcome is a number) were considered and in cases where the result was 

expressed as lower than a numerical threshold value (e.g., <LOQ) this value was used directly. 

For each lot of the dataset considered, were used the analytical parameters (or variables) listed 

in Table 1 together with their units of measurement and the specifications they must satisfy.  

Table 1 is completed by the abbreviations used below to identify the different analytical 

parameters in the graphs. 
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Table 1 

Analytical parameter 

(or variable) 
Units 

Allowed Range  

of Variability 

Analytical 

Technique 
Abbreviation 

pH pH units 5.0 – 8.0 pH-metry ph 

Residual water content % 1.0 – 5.0 Karl-Fisher titration h2o 

Assay % 80 - 92 HPLC assay 

Starting material residual content % ≤ 0.20 HPLC sm 

Largest known impurity % ≤ 0.20 HPLC known 

Largest unknown impurity % ≤ 0.20 HPLC unk 

Total impurities content  % ≤ 1.0 HPLC total 

Residual solvent 1 content % ≤ 5.0% Gas-chromatography solv1 

Residual solvent 2 content % ≤ 5.0% Gas-chromatography solv2 

Residual solvent 3 content % ≤ 1.0% Gas-chromatography solv3 

 

 

The dataset pertaining to the thirty-one lots considered consists of a table (called double entry 

table), whose rows each contain the data relating to a given lot while each column refers to a 

specific analytical parameter measured, or variable. 

This data table, in statistical jargon, is usually referred to as a data matrix. 

Data analysis and visualization were performed using RStudio (The R Foundation for Statistical 

Computing) and, above all, Minitab 19 (GMSL S.r.l. - Via Giovanni XXIII, 21 - 20014 

Nerviano (Milan), Italy). 

For the correlogram in Figure 1 it has been used the R package corrplot (T. Wei, Fujian 

Agriculture and Forestry University, China) [2, 3] 
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3. RESULTS AND DISCUSSION 

 

Figure 1 shows the so-called correlogram, i.e., the graph that displays the degree of linear 

correlation between the pairs of variables considered. 

 

 Figure 1 

  
 

Each element of this diagram is a geometric figure that becomes more and more elliptical and 

intensely colored the more the two variables are linearly correlated.  On the main diagonal, 

where the correlation is maximum (in fact the correlation of a variable with itself is equal to 1) 

the ellipses become a segment. 

The ellipses are oriented to the right and blue colored if the two variables are positively 

correlated, while they are oriented to the left and red / brown colored if they are negatively 

correlated 
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The lack of numerous elongated and intensely colored ellipses indicates, already at a glance, 

that, in general, the variables are not very linearly correlated with each other. However, some 

exceptions are represented by couples:  

 largest known impurity (known) and total impurities (total): positive correlation 

 residual quantities of solvents 2 and 1: positive correlation 

 residual quantity of solvent 1 (solv1) and assay (assay): negative correlation 

Figure 1 also indicates the presence of weaker correlations (i.e., non-elongated and faintly 

colored ellipses) such as those between the pairs: 

▪ residual quantity starting material (sm) and pH value (ph): positive correlation 

▪ largest unknown impurity (unk) and total impurities (total): positive correlation 

▪ residual amount of water (h2o) and largest unknown impurity (unk): positive correlation 

▪ residual quantity of starting material (sm) and residual amount of water (h2o): negative 

 correlation. 

These correlations, and particularly the stronger ones, reveal some characteristics worthy of 

further investigation. To learn more about them, the quantitative estimation of the degree of 

linear correlation between the different variables helps. This estimate is provided by the so-

called correlation matrix, i.e., the numerical basis on which the graph in Figure 1 was made. 

The correlation matrix is here below in Table 1. 

 

Table 1 

 

  h20 ph assay sm known unk total solv1 solv2 

ph -0,307                 

assay -0,275 0,210               

sm -0,424 0,486 0,171             

known -0,243 -0,020 0,317 0,088           

unk  0,239 -0,361 -0,283 -0,308 -0,041         

total -0,061 -0,190 -0,084 0,131 0,590 0,432       

solv1 -0,050 -0,271 -0,526 -0,020 -0,007 0,010 -0,110     

solv2 -0,009 -0,141 -0,277 -0,077 -0,041 -0,117 -0,339 0,843   

solv3 -0,015 -0,019 0,115 0,092 0,061 -0,100 -0,108 0,062 0,180 
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The correlation matrix, in practice, is nothing more than a table whose elements are the linear 

correlation coefficients of Bravais - Pearson each calculated for a given row-column pair.  

 

𝜌𝑖𝑗  =  𝜌(𝑋𝑖 , 𝑋𝑗)  =  
𝐶𝑜𝑣 (𝑋𝑖, 𝑋𝑗)

√𝑉𝑎𝑟(𝑋𝑖) 𝑉𝑎𝑟 (𝑋𝑗)

 =  
𝜎𝑖𝑗

𝜎𝑖𝜎𝑗
       𝑖 ≠ j    

where:  

Xi = i-row of the data matrix 

Xj = j-column of the data matrix 

𝜌𝑖𝑗  ∈  [−1, +1]      𝑖 ≠ j  

 

Pearson’s correlation coefficients shown in Table 1 highlight some important aspects for the 

purpose of creating a Multiple Linear Regression model and precisely: 

▪ some independent variables (e.g., residual quantities of solvents 1 and 2, assay, etc.) are 

 highly correlated with each other (i.e., 𝜌𝑖𝑗 > | 0.5 |) and therefore, reasonably, will have 

 to be excluded from the model to prevent problems of multicollinearity. In fact, the ideal 

 would be that all independent variables were significantly correlated with the dependent 

 variable, but not with each other; 

▪ considering assay as a dependent variable (y), it is observed that, except for the residual 

 content of solvent1 (solv1), it is not strongly correlated with the other available regressors 

 (i.e., 𝜌𝑖𝑗 < | 0.5 |), in fact: 

 

 h20 ph sm known unk total solv1 solv2  solv3 

assay -0,275 0,210 0.171 0.317 -0.217 -0.084  -0,526 -0.277 0.115 

 
▪ from the values reported above it is also to be expected that regressors such as the total 

 content of impurities (total) do not appear in the final model due to their poor correlation 

 (𝜌𝑎𝑠𝑠𝑎𝑦,𝑡𝑜𝑡𝑎𝑙 = -0.084) with the dependent variable (assay). 

For the purposes of building a model it is therefore necessary, first of all, to investigate the 

relationship of each independent variable with the dependent variable and any relationships 

existing between the independent variables. This analysis is carried out using scatterplots and 

simple linear regression models as here below documented only for some independent 

variables, namely those that show the highest linear correlation coefficients. 
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▪ Regression Analysis: assay vs. solv1 (R = -0.526) 

 The regression equation is assay = 90,56 - 1,318 solv1 

 Model Summary 

S R-sq R-sq(adj) 

1,97469 27,63% 25,13% 
 

 Analysis of Variance 

Source DF SS MS F P 

Regression 1 43,166 43,1655 11,07 0,002 

Error 29 113,083 3,8994     

Total 30 156,248       
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▪ Regression Analysis: assay vs. known (R = 0.317) 

 The regression equation is assay = 86,70 + 98,00 known 

 Model Summary 

S R-sq R-sq(adj) 

2,20131 10,06% 6,96% 
 

 Analysis of Variance 

Source DF SS MS F P 

Regression 1 15,721 15,7213 3,24 0,082 

Error 29 140,527 4,8458     

Total 30 156,248       
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▪ Regression Analysis: assay vs. solv2 (R = - 0.277) 

 The regression equation is assay = 89,99 - 0,8270 solv2 

 Model Summary 

S R-sq R-sq(adj) 

2,23043 7,67% 4,48% 
 

 Analysis of Variance 

Source DF SS MS F P 

Regression 1 11,979 11,9791 2,41 0,132 

Error 29 144,269 4,9748     

Total 30 156,248       
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From the examination of the results relating to the relationships between the dependent variable 

(y, assay) and the independent variables, some observations common to all cases can be drawn: 

▪ the low levels of linear correlation initially found (Figures 1 and 2) are related to the wide 

 dispersion of experimental data around the regression lines. In all models shown here 

 above, the S value (i.e., standard error of the regression) is close to or greater than  two. 

 S represents the standard deviation of how far the data values fall from the  fitted values 

 and it is measured in units of the response variable. Since, approximately, 95% of  the 

 observations should fall within  2S (which is a quick approximation of a 95% 

 prediction interval), in the above regressions about 95% of the observations should fall 

 within  4 – 4.4 % of the fitted lines; 

▪ previous point suggests that the final model will also be characterized by a  certain 

 standard error value. A regression analysis, in fact, can only be as good as the data on 

 which it is based; 

▪ the residuals, which can be seen as the realization of the error associated with each model, 

 except for some anomalous values (which anyway result from anomalous data), do not 

 show specific patterns. 

 

By extending the above analysis to the other dependent variables and ordering them on the basis 

of the absolute values of the linear correlation coefficient, they are identified as possible 

variables on which to build the model: 

 

 S R-sq R-sq(adj.) Correlation  
solv1 1,97469 27,63 25,13 -0,526 

known 2,20131 10,06 6,96 0,317 
unk 2,22606 8,03 4,86 -0,283 

solv2 2,23043 7,67 4,48 -0,277 
 h2O 2,23182 7,55 4,36 -0,275 
pH 2,26966 4,39 1,09 0,210 
sm 2,28681 2,94 0 0.171 

 

The remaining independent variables (solv3, total) are not considered as they are even less 

linearly related to the dependent variable assay and therefore even less able to contribute 

significantly to the model. 

  

https://blog.minitab.com/blog/adventures-in-statistics/when-should-i-use-confidence-intervals-prediction-intervals-and-tolerance-intervals
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Considering now only the correlations between independent variables, the values shown in 

Table 2 below show that, in addition to the pair (solv1, solv2) to which is associated an R value 

equal to 0.843, other pairs of variables also show significant correlations: (sm, ph) with R = 

0.486 or (sm, h2o) with R = -0.424. 

 

Table 2 

 

 h20 ph sm known unk solv1 

ph -0,307           

sm -0,424 0,486         

known -0,243 -0,02 0,088       

unk 0,239 -0,361 -0,308 -0,041     

solv1 -0,05 -0,271 -0,02 -0,007 0,01   

solv2 -0,009 -0,141 -0,077 -0,041 -0,117 0,843 

 

 

Given all this, a model based on the functional relationship is built: 

𝑎𝑠𝑠𝑎𝑦 = 𝑓(𝑠𝑜𝑙𝑣1, 𝑘𝑛𝑜𝑤𝑛, 𝑢𝑛𝑘, 𝑠𝑜𝑙𝑣2, ℎ2𝑜, 𝑝ℎ, 𝑠𝑚) 

 

Taking into account these variables and all second-order interactions, the model described by 

the regression equation (1) is obtained: 

 

Assay = 37 + 126 solv2 - 826 known - 37,1 h20 + 12,2 ph - 494 sm + 119 unk  

  - 108,0 solv1 - 3,59 h20*solv1 + 4,93 h20*ph - 452 h20*sm + 561 h20*known 

  + 138 h20*unk - 0,88 h20*solv2 - 120 ph*sm - 70 ph*known - 64 ph*unk 

  + 18,0 ph*solv1- 19,9 ph*solv2 - 11753 sm*known + 15202 sm*unk    (1) 

  - 265 sm*solv1 + 874 sm*solv2 - 2775 known*unk + 433 known*solv1 

  - 266 known*solv2 + 27,6 unk*solv1- 41,2 unk*solv2 + 0,04 solv1*solv2 

 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

1,56321 96,87% 53,08% 0,00% 
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It deals of a model in 28 variables (between single and double) and a constant. 

In this model and in what follows it can be identified three different types of terms: 

 a CONSTANT, that in this case is equal to 37 

 PURELY LINEAR TERMS (monomial grade = 1) whose general structure is: 

numerical parameter * independent variable 

 MIXED TERMS (monomial grade = 2) whose general structure is: 

numerical parameter * independent variable1 * independent variable2 

This clarification will help later when two different types of graphs (i.e., CONTOUR PLOTS) will 

be compared with each other. 

The R-sq value, which measures the percentage of variation in the data explained by the model 

is, in this case, about 97% and it is calculated as: 

𝑅 − 𝑠𝑞 =  1 −  
𝑆𝑆𝑒

𝑆𝑆𝑡𝑜𝑡
 =  1 −  

∑ (𝑦𝑖 −  �̂�𝑖)
2𝑛

𝑖=1

∑ (𝑦𝑖 −  �̅�)2𝑛
𝑖=1

 

where: 

𝑆𝑆𝑒  =  ∑ (𝑦𝑖 −  �̂�𝑖)
2𝑛

𝑖=1  = error sum of squares (variation not explained by model) 

𝑆𝑆𝑡𝑜𝑡  =  ∑ (𝑦𝑖 − �̅�)2  =𝑛
𝑖=1   total sum of squares (total variation in the model). 

 

Unfortunately, the R-sq (adj) value is much lower than R-sq (53% ca. vs. 97% ca.) and, above 

all, this model totally lacks any predictive capacity, in fact R-sq (pred) = 0.00%. This finding 

is typical of overfitting and in fact the model shows many terms that are not significant as 

indicated by P-values >> 0.05 (Table 3). An example for all is represented by the factor solv1 

* solv2 to which corresponds a P-value = 0.983. In this respect it is always useful to bear in 

mind that: 

It is frequently helpful to have a procedure that can guard against overfitting the model, that 

is, adding terms that are unnecessary. The adjusted R2 penalizes us for adding terms that are 

not helpful, so it is very useful in evaluating and comparing candidate regression models [1] 
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Table 3 - Analysis of Variance 
 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 28 151,361 5,40575 2,21 0,359 

  h20 1 2,430 2,43001 0,99 0,424 

  ph 1 0,190 0,18952 0,08 0,807 

  sm 1 0,007 0,00667 0,00 0,963 

  known 1 0,014 0,01377 0,01 0,947 

  unk 1 0,032 0,03191 0,01 0,919 

  solv1 1 3,498 3,49756 1,43 0,354 

  solv2 1 3,718 3,71792 1,52 0,343 

  h20*ph 1 2,194 2,19376 0,90 0,443 

  h20*sm 1 1,290 1,29026 0,53 0,543 

  h20*known 1 2,071 2,07097 0,85 0,454 

  h20*unk 1 2,787 2,78709 1,14 0,397 

  h20*solv1 1 1,613 1,61329 0,66 0,502 

  h20*solv2 1 0,102 0,10228 0,04 0,857 

  ph*sm 1 0,179 0,17874 0,07 0,812 

  ph*known 1 0,003 0,00315 0,00 0,975 

  ph*unk 1 0,296 0,29631 0,12 0,761 

  ph*solv1 1 2,740 2,73975 1,12 0,401 

  ph*solv2 1 3,568 3,56756 1,46 0,350 

  sm*known 1 0,003 0,00319 0,00 0,974 

  sm*unk 1 1,957 1,95727 0,80 0,465 

  sm*solv1 1 4,142 4,14200 1,70 0,323 

  sm*solv2 1 5,957 5,95673 2,44 0,259 

  known*unk 1 1,598 1,59772 0,65 0,504 

  known*solv1 1 4,800 4,79984 1,96 0,296 

  known*solv2 1 1,313 1,31339 0,54 0,540 

  unk*solv1 1 0,276 0,27646 0,11 0,769 

  unk*solv2 1 0,730 0,72964 0,30 0,640 

  solv1*solv2 1 0,001 0,00150 0,00 0,983 

Error 2 4,887 2,44362     

Total 30 156,248       
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The Pareto diagram shown in Figure 2, which distinguishes significant effects from 

insignificant ones, in this case is of no use due to the presence of so many highly correlated 

terms that make the model inadequate. 

 

 Figure 2 

 

 

Figure 3, here below, summarizes the residual diagrams and they too are poorly informative 

given the inadequacy of this initial model which, although it explains about 97% of data 

variability, is practically unusable.  
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 Figure 3 

 

 

This initial model was then refined by progressively eliminating the insignificant terms. The 

refinement was carried out as summarized in Figure 4, namely trying to keep the R-sq value as 

high as possible and concurrently increase both the values of R-sq (adj) and, above all, that of 

R-sq (pred). 

The refinement process has been considered completed when this continuous growth stopped, 

and further attempts of improvement were only leading to an increase in the standard error that 

began to increase. 
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 Figure 4 
 

 

 

The numerical values corresponding to the points in the graph of Figure 4 are shown below in 

Table 4 and indicate in model no. 7 the best compromise. In fact, it combines the highest values 

of R-sq, R-sq (adj) and R-sq (pred) with the lowest S value. 

Comparing the initial model (1) with the final one described by the regression equation (2) here 

below, it is evident that the refinement process although at the cost of a loss of approximately 

12% in predictive capacity (i.e., 84.76% vs. 96.87%), has led to a model characterized by: 

 a standard error 30% lower than the initial figure (i.e., 1.09133 vs. 1.56321), 

 a R-sq (adj) value which only differs from R-sq by 9% ca. (i.e., 77.13 vs. 84.76%) against 

 the 45% observed in the initial model (i.e., 53.08% vs. 96.87%),  

but most of all: 

 a predictive capacity that increased up to 71.74% starting from an initial 0.00%. 

Finally, while the initial model (1) was based on 28 variables, the refined one (2) uses only 10. 

Figure 4, but even more Table 4, show that further adjustments immediately lead to significant 

losses in the characteristics of the model. 
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 Table 4 

Model No. S R-sq R-sq(adj.) R-sq(pred) 

1 (initial) 1,56321 96,87% 53,08% 0,00% 

2 1,08621 91,69% 77,35% 0,00% 

3 1,00178 91,65% 80,73% 21,70% 

4 0,950528 91,33% 82,65% 44,08% 

5 0,958665 90,59% 82,35% 58,48% 

6 1,01619 88,76% 80,17% 61,93% 

7 (final) 1,09133 84,76% 77,13% 71,74% 

8 1,23492 79,50% 70,72% 35,01% 

 

The regression equation associated with the best model resulting from the optimization process 

is: 

 

Assay = 93,26 - 4,136 h20 - 43,34 solv1 + 31,37 solv2 + 136,9 h20*known 

   + 25,45 h20*unk + 5,22 ph*solv1 - 3,776 ph*solv2 - 2742 known*unk  (2) 

   + 577 known*solv1 - 429,8 known*solv2 

 

Three of the ten variables in model (2) appear as single independent variables (or factors) while 

the remaining seven are interactions between two variables. The three factors that appear 

individually (solv1, solv2 and h2o) are among the variables that, in the initial analysis, were 

linearly well correlated with assay, in fact: 

 R (assay, solv1)  =  -0.526 

 R (assay, solv2) =  -0.277 

 R (assay, h20)  = -0.275 

Other variables, also well correlated linearly with assay, such as: 

 known : R (assay, known) = 0.317 

 unk : R (assay, unk)  = -0.283 

 ph  : R (assay, ph)  = 0.210 

and which were used to build the initial model, appear instead in the mixed terms (interactions). 
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The remaining less linearly correlated variables with assay such as: 

 sm  : R (assay, sm) = 0.171 

 solv3 : R (assay, solv3)  = 0.115 

 total : R (assay, total)  = -0.084 

do not appear in the model. 

 

Figure 5 shows the Pareto diagram which highlights how all the effects considered in model (2) 

are significant. 

 

 Figure 5 

 

 

Figure 6 shows the graphs relating to the residuals. The normal probability plot and the 

histogram indicate a practically normal trend. The diagrams on the right show a scattering of 

points around zero practically free from patterns or trends. 
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 Figure 6 

 

 

Figure 7 shows the good level of approximation of the experimental assay values provided by 

model (2). The initial experimental data (Assay exp. values) are in fact represented by a green 

line while the limits, lower (Assay calc. - 2S) and upper (Assay calc. + 2S), calculated using the 

model (2) are represented by two broken lines respectively in red and blue.  

 

 Figure 7 
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Figure 7 shows that experimental values (green line) are included among those calculated on 

the basis of model (2). 

 

The two figures below show the so-called FACTORIAL PLOTS relating to the MAIN EFFECTS 

(Figure 7) and to the INTERACTIONS BETWEEN FACTORS (Figure 8). 

 

Figure 7 

 
 

The graphs in Figure 7 show the average effect on assay of those factors such as the residual 

levels of water (h2o) and the two solvents 1 and 2 (solv1, solv2) as their respective levels 

vary. In general, the steeper the segment, the more significant the effect of the factor. In this 

case it is observed how the residual content of the two solvents significantly influences assay 

while the residual water content (h2o) shows only an almost zero effect. 

In the gray fields of Figure 7 are the main effects of those factors (ph, known, unk) which do 

not appear individually in the model. 
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Figure 8 

 

 

The INTERACTION PLOT in Figure 8 shows if there are interactions between the levels of the factors 

considered. In general, the more the segments exhibit significant slopes or even intersect, the greater 

the significance of the levels of interaction between the factors involved. In this case it can therefore 

be observed how, for example, the interactions between the residual levels of water and unknown 

(h2o   unk) or known impurity (h2o   known) or between the residues of unknown and known 

impurities (known   unk) are of little significance. 

On the contrary, the interactions between: 

 pH and residual solvent content 1 or 2 (ph   solv1, ph   solv2) 

  known impurity level and residual solvent 1 or 2 content (known   solv1, known   solv2) 

are all significant. 
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The Main Effects graphs in Figure 7 show how the residual content of solvents 1 and 2 

significantly influences the assay value. To further investigate this type of specific 

relationship, you can use the so-called level curves (or CONTOUR PLOT), a graphical 

representation of the response variable (assay) as a function of two or more factors based on 

the linear model developed. Figure 9 shows the behavior of the response variable (assay) as a 

function of the two factors solv1 and solv2 which is obtained using the linear model 

developed and keeping all the other variables constant. For them the median value was chosen 

as the reference. 

 

Figure 9 

 
 

Figure 9 shows that, with the other variables being equal, the maximum assay value (dark 

green area) is obtained in the vicinity of solv1 equal to approx. 0.5%. and solv2 equal to 4.5% 

approx. 

A more spatial, three-dimensional view of the interaction between solv1 and solv2 on the 

assay value is offered by the response surface (or SURFACE PLOT) shown in Figure 10 which 

shows the planarity (i.e., linearity in space) of this relationship. 
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Figure 10 

 
 

 

The use of these survey tools, which allow us to define and represent the design space (ICH 

Q8 (R2)), is even more useful when we want to study, in order to exploit them practically, the 

interactions between different variables.  

Figure 8, for example, shows a significant interaction between pH value (ph) and the residual 

content of solvent 1 (solv1).  

Figure 11 shows the behavior of the response variable (assay) as a function of the two factors 

ph and solv1 which is obtained using the linear model developed and keeping all the other 

variables constant. As before, the median value was chosen as a reference for the other 

variables. In this case, since the relationship between dependent variable (assay) and 

independent variables (solv1, ph) is of “mixed nature” and not “purely linear” as it was for 

(assay   solv1, solv2), the regions of the useful operating ranges instead of appearing as 

parallel bands (Figure 9 ) show up as curved  bands as shown in Figure 11. The operating 

range associated with assay values between 90% and 100% is indicated by the dark green 

band adjacent to the orange one. 
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Figure 11 

 
 

A spatial view of the interaction between solv1 and ph on the assay value is given by the 

response surface in Figure 11. 

 

Figure 11 
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4. CONCLUSIONS 

 

It was shown how, applying MLR to the data that Quality Control systematically collects for release 

purposes on different samples of a given API, it is possible to extract information about the 

manufacturing process behind such data. 

In particular, by choosing the assay values as dependent variable and all others that define the API’s 

purity profile as independent variables, were identified the parameters that most affect the assay and 

how they interact with each other. On this basis it is therefore possible to establish whether the 

parameters that are controlled are really those that are needed and therefore to define a product control 

strategy based on experimental data. 

It was then shown how, thanks to the factorial graphics, it is possible to identify and graphically 

represent the design space present in the production process used. The operating ranges highlighted 

in the Contour Plots suggested, for example, areas where single variables or their combinations 

allowed to maximize the assay value and thus improve the process. 

Moreover, the availability of data pertinent to several years of production of a given active ingredient 

would allow to establish whether a given model maintains its predictive character, and therefore its 

validity, over time. 

It is however clear, in all cases, that the quality of the models that can be obtained and therefore of 

the deductions / predictions that can be made strongly depend on the data available. 

The approach detailed here can be extended to other situations such as, for instance: 

 stability studies, where: y = assay value - 𝑥𝑖 = stability indicating parameters 

or 

 any manufacturing process, where: y = process yield -  𝑥𝑖= parameters measured in-process 

provided, of course, that data show some degree of variability. 

All the considerations made so far have an undoubted value for the purposes of a process knowledge 

based on quantitative data, however, given their chemical nature, they need to be supplemented by 

specific knowledge of R&D and Production. 
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