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Principal Component Analysis and Cluster Analysis as statistical tools 

for a multivariate characterization of pharmaceutical raw materials 
 

1. INTRODUCTION 

 

As known, the pharmaceutical industry processes are complex and influenced by numerous 

parameters that determine their variability. One of these is certainly represented by the raw 

materials which, together with everything that happens during the production process, 

determine the quality of the finished product. Variations, sometimes even limited, in the quality 

of raw materials can in fact cause problems in production. This variability arises from the 

different origin of raw materials, for which pharmaceutical companies usually have more than 

one supplier, and from the intrinsic variability in the production processes of the raw materials 

themselves. 

The examination of raw materials characteristics is, for instance, a key step in all investigations 

resulting from the presence of anomalous data. The FDA guideline on OOS, for example, is 

extremely precise in this regard: 

“  OOS results may indicate a flaw in product or process design. For example, a lack of 

robustness in product formulation, inadequate raw material characterization or control, 

substantial variation introduced by one or more unit operations of the manufacturing process, 

or a combination of these factors can be the cause of inconsistent product quality. In such cases, 

it is essential that redesign of the product or process be undertaken to ensure reproducible 

product quality  ” 

The same guideline also states that: 

“…Current good manufacturing practice for APIs includes the performance of scientifically 

sound raw material testing…” 

This concept of "scientifically sound raw material testing" is also emphasized in the ICH Q7 

guideline which, in paragraph 11, states that: 

“  All specifications, sampling plans, and test procedures should be scientifically sound and 

appropriate to ensure that raw materials, intermediates, APIs, and labels and packaging 

materials conform to established standards of quality and/or purity.  “ 
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In common practice, the characterization of raw materials is carried out in a univariate way, i.e. 

by comparing the average values, relative to several batches, of each parameter that 

characterizes a given raw material (e.g., assay, pH, etc.) using statistical tools such as 2-sample 

t-test and ANOVA. This approach often does not allow to adequately characterize a given raw 

material because it does not capture, in its entirety, the singularity of each batch and therefore 

does not contextualize it fully with respect to the others coming from the same supplier. 

Therefore, only the adoption of a multivariate approach can respond to such global needs and 

therefore provide an adequate raw material characterization. 

In this post, we will illustrate the application to multivariate characterization of raw materials 

of two of the main techniques of Multivariate Statistical Data Analysis (MVDA) [1,2,3,4,5] and 

precisely the Principal Component Analysis ( PCA) [6] and Cluster Analysis (CA) [1,2,3]. 

To illustrate the details, a raw material (synthetic intermediate) was chosen, supplied by three 

different suppliers and characterized by a limited number of parameters (four) but rather 

different from each other by nature: assay, largest known impurity, color and residual water 

content according to Karl Fischer. These, in fact, were the only continuous (or numerical) 

variables present and common to the various suppliers. 

The multivariate characterization of the raw materials proposed here, in addition to the case 

described, can also be directly extended to other situations such as, for example, the comparison 

between batches of the same finished product. In this case, in fact, there are only more 

parameters to consider, but, for the rest, nothing changes. 

 

 

 

2. EXPERIMENTAL SECTION 

 

 

Table 1 below shows the database used. These are the values of assay, largest known impurity, 

color (percentage transmittance at predetermined λ) and Water Content according to Karl-

Fischer including their units of measurement and specifications, relating to a total of 41 lots 

from three different suppliers (14 from S1, 13 from S2 and 14 from S3). 
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Table1 

Supplier Supplier_Batch No. 
Assay  

(%) 
Largest known 

Imp. (%) 
Color  
(%) 

Water 
Content 

(%) 

Su
p

p
lie

r 
1

 

1 99,9 0,03 98,3 0,07 

2 99,9 0,02 98,5 0,11 

3 99,9 0,03 97,7 0,09 

4 99,9 0,04 98,1 0,09 

5 99,9 0,03 96,6 0,09 

6 99,9 0,02 98,3 0,07 

7 99,9 0,02 98,0 0,13 

8 99,9 0,03 98,4 0,11 

9 99,9 0,02 98,3 0,13 

10 99,9 0,02 98,2 0,09 

11 99,9 0,03 97,3 0,11 

12 99,9 0,04 98,4 0,09 

13 99,9 0,04 98,0 0,11 

14 99,9 0,02 97,9 0,11 

Su
p

p
lie

r 
2

 

15 99,8 0,05 94,6 0,20 

16 99,8 0,05 94,9 0,10 

17 99,8 0,04 94,4 0,10 

18 99,9 0,03 95,1 0,10 

19 99,8 0,02 95,2 0,10 

20 99,8 0,03 95,6 0,10 

21 99,8 0,03 95,1 0,10 

22 99,9 0,02 96,4 0,10 

23 99,4 0,05 95,3 0,20 

24 99,8 0,03 94,6 0,10 

25 99,9 0,02 95,1 0,10 

26 99,8 0,04 96,3 0,10 

27 99,8 0,03 95,3 0,10 

Su
p

p
lie

r 
3

 

28 99,8 0,07 91,0 0,16 

29 99,8 0,06 91,0 0,14 

30 99,9 0,07 91,0 0,16 

31 99,7 0,08 91,0 0,16 

32 99,8 0,06 91,0 0,15 

33 99,8 0,07 91,0 0,16 

34 99,7 0,08 91,0 0,15 

35 99,9 0,08 92,0 0,18 

36 99,9 0,07 94,0 0,20 

37 99,9 0,07 93,0 0,30 

38 99,9 0,08 91,0 0,20 

39 99,9 0,06 94,0 0,20 

40 99,9 0,08 95,0 0,20 

41 99,9 0,07 93,0 0,20 

Specifications NLT 95% NMT 0,10% NLT 90,0% NMT 0,5% 
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The dataset relevant to the forty-one batches considered consists of a table in which each row 

contains the data relating to a given batch while each column refers to a specific measured 

analytical parameter, or variable. 

This data table is usually known in statistical jargon as the data matrix. Data analysis and their 

visualization were conducted using Minitab 19 (GMSL S.r.l. - Via Giovanni XXIII, 21 - 20014 

Nerviano (Milan), Italy) and RStudio version 1.3.1093 and R version 4.0.3 (The R Foundation 

for Statistical Computing). The following specific R packages have been used: 

 FactoMineR (F. Husson, Agrocampus Ouest, Rennes University, France) [7, 8] 

 factoextra (A. Kassambara, HalioDx, Marseille, France) [9, 10,11] 

 NbClust (M. Charrad, N. Ghazzali, V. Boiteau, A. Niknafs, Laval University, Canada) [12 

 corrplot (T. Wei, Fujian Agriculture and Forestry University, China) [13, 14] 

 fpc (C. Hennig, Bologna University, Italy) 
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3. RESULTS AND DISCUSSION 

 

Principal Component Analysis, PCA, is one of the most powerful and widely used multivariate 

methods for data exploration. It is used when a simpler representation of a set of related 

variables is desired. In practice, the starting variables that describe the data are transformed into 

new variables (i.e., the main components, PC) which are linear combinations of the initial 

variables and are, by construction, orthogonal to each other. The PCA assumes that the 

directions where there is greater variability are the most "important" or, indeed, the "principal" 

ones. PCA does not work if the original variables are not related to each other. The existence 

of correlation indicates redundancy in the data. 

The first step is therefore to verify the degree of linear correlation existing between the four 

variables involved. Table 2 shows the correlation matrix while Figure 1 shows the so-called 

matrix plot, i.e., a graphical representation of the relationships between pairs of variables. 

 

Figure 1 
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Table 2 

 

 Assay Largest known imp. Color 

Largest known imp. -0,211     

Color 0,322       -0,817   

Water Content -0,165         0,753 -0,594 

 

 

The examination of the values in Table 2 shows how some variables (e.g., amount of largest 

known impurity and color, etc.) are highly correlated with each other and therefore there are 

the conditions for applying the PCA. A graphic representation that allows to better grasp the 

relationships existing between the different variables is that provided by the correlogram shown 

in Figure 2. 

 

 Figure 2 
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Each element of this graph is a geometric figure that becomes more and more elliptical and 

intensely colored the more the two variables are linearly related. On the main diagonal, where 

the correlation is maximum (in fact the correlation of a variable with itself is equal to 1) the 

ellipses become a segment.  

The ellipses are oriented to the right and colored in blue if the two variables are positively 

correlated to each other, while they are oriented to the left and colored in red / brown if they 

are negatively correlated.  

The examination of the correlogram shows a strong correlation between the couples: 

▪ Largest known impurity - Color: negative 

▪ Largest known impurity - Water Content: positive 

▪ Water Content - Color: negative 

 

Beyond the more statistical evaluations that follow, it is interesting to observe how already from 

these first findings it is possible to derive correlations of potential chemical interest, e.g., the 

higher the residual Water Content, the higher the content of Largest known impurity, etc.  

To better understand the degree of linear correlation existing between the variables mentioned 

above, the relationships between them can be analyzed using Simple Linear Regression. As an 

example, this analysis is shown below only for those pairs of variables that show the highest 

linear correlation coefficients. 
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Regression Analysis: Color vs. Largest known impurity 

The regression equation is Color = 99,57 - 100,3 Largest known impurity 

Model Summary 

S R-sq R-sq(adj) 

1,54917 66,69% 65,84% 

   
Analysis of Variance 

Source DF SS MS F P 

Regression 1 187,422 187,422 78,09 0,000 

Error 39 93,597 2,400     

Total 40 281,019       
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Regression Analysis: Water Content vs. Largest known impurity 

The regression equation is Water Content = 0,05647 + 1,718 Largest known impurity 

Model Summary 

S R-sq R-sq(adj) 

0,0327775 56,75% 55,65% 
 
Analysis of Variance 

Source DF SS MS F P 

Regression 1 0,0549877 0,0549877 51,18 0,000 

Error 39 0,0419001 0,0010744     

Total 40 0,0968878       
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Given the evident correlations that exist, it is therefore possible to apply the PCA to the 

starting database (or data matrix) reported in Table 1. Leaving aside the more mathematical 

and calculation aspects, it is interesting to focus on the output resulting from PCA which is 

summarized below: 

 

 

Principal Component Analysis:  

Table 3: Eigenanalysis of the Correlation Matrix 

Eigenvalue 2,5514 0,9174 0,3926 0,1386 

Proportion 0,638 0,229 0,098 0,035 

Cumulative 0,638 0,867 0,965 1,000 
 

Table 4: Eigenvectors 

Variable PC1 PC2 PC3 PC4 

Assay 0,252 0,948 -0,180 0,075 

Largest known impurity -0,586 0,189 -0,150 -0,774 

Color 0,562 0,012 0,623 -0,543 

Water Content -0,526 0,257 0,746 0,317 
 

 

Table 3 shows the so-called eigenvalues which, beyond their complex mathematical meaning, 

in this context represent the variance associated with each eigenvector, that is, with each 

principal component (PC). The eigenvalues are ordered in descending order and that is to say 

that, passing from one principal component to the next, the variability that each of them 

intercepts gradually decreases, so much so that the smaller eigenvalues are associated with 

information that is generally not relevant. The first principal component (PC1 - Table 4) is 

therefore the most important to represent the variation in the measurements of the 41 batches 

of raw material considered here. In fact, it explains 63.8% of the variability in the data, while 

the second component only 22.9% and so on (Proportion – Table 3). Considering only the first 

and second components, it is therefore possible to explain 86.7% of the variability in the starting 

data. In practice, from the four initial variables we are reduced to only two. Although this 

involves an overall loss of information of 13.3% (100% - 86.7%), however, there is the 

enormous advantage of being able to work with only two coordinates and therefore represent 

each single lot as a point in a Cartesian plane identified by the axes PC1 and PC2. 

At this point the score plot in Figure 3 below is highly explanatory. 
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 Figure 3 

 
 

Each point of the graph identifies a lot (or individual or observation as we would say in 

statistical jargon) of those shown in Table 1. 

The points are of three colors, one for each of the three suppliers from which the individual lots 

come. 

At first glance some important aspects are evident: 

▪ the points (and therefore the lots) are distributed mainly horizontally, i.e. in the direction 

 of the first principal component and this is obvious since, as mentioned above, it  

 intercepts as much as 63.8% of the entire variability of the data, 

▪ the datapoint corresponding to lot 23 is completely separate from all the others to indicate 

 that it clearly differs from them, 

▪ the datapoints corresponding to the lots of supplier 1, and marked with blue dots, are all 

 close to each other, while those of supplier 3, marked with green diamonds, are a little 

 more dispersed in the plan, but still contained in a fairly limited "cloud".  

 The datapoints associated with the lots of supplier 2, marked with red squares, are instead 

 scattered on the plane with two fairly distinct central nuclei and two points distant from 

 the others. In particular, the point, and therefore the lot, 23, appears so far from the 

 others coming from the same supplier as to suggest that it does not have much to do with 

 them. 
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A better perception of the dispersion of the lots of Supplier 2 and of the degree of separation 

that distinguishes lot 23 from the others provided by the same supplier is given by Figure 4 

which is nothing more than the score plot of Figure 3 in which only the datapoints relating to 

the lots of supplier 2 appear. 

 

 Figure 4 

 
 

In Figure 4 the two distinct aggregation nuclei of the lots of the supplier 3 mentioned above are 

evident. To these are added lots 15 and 23 which, in this coordinate system (PC1, PC2), are 

clearly separated from the others. 

The anomalous nature of lot 23 is also well highlighted by the outlier plot in Figure 5 which 

shows the Mahalanobis distances of each point (or lot) with respect to the centroid of each 

group of points.  
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 Figure 5 

 
 

The graph of Figure 5 also identifies lot 37 as certainly anomalous and the point corresponding 

to lot 40 appears close to the reference line too. Examining the score plot in Figure 3, it can be 

seen that point 37 is only the most marginal one among those of supplier 3 (green diamonds) 

while point 40 mixes with the others. 

A better perception of the anomaly of lots 37 and 40 is obtained by examining the score plots 

obtained using PC3 (Figure 6) and PC4 (Figure 7) in ordinate instead of PC2. 

 Figure 6 
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 Figure 7 

 
 

Point 37 is far from other datapoints in both the score plots of Figures 6 and 7, while point 40 

is well separated only in Figure 7. 

This different "resolving power" of the score plots, and which derives from the choice of a 

different ordinate, follows precisely from the composition of the single coordinates or principal 

components. This composition is summarized in Table 4 and can easily be understood thinking 

that, for example, the first principal component is, in fact, described by the following 

mathematical relationship: 

Z1 = 0.252 assay – 0.586 largest known impurity + 0.562color -0.526 water content 

and, similarly, it applies to the other components. 

Examining the structure of this equation it is evident that the first component is approximately 

an average of three of the four variables that characterize each batch, namely: largest known 

impurity, color and water content. 

The second component, instead, has the following structure: 

Z2 = 0.948 assay + 0.189 largest known impurity + 0.012color +0.257 water content 

In this case the assay variable is the one that weighs the most of all while color-type variables 

contribute in a practically insignificant way. In this regard, consider that the point 

corresponding to lot 23 is so well separated in the score plot of Figure 3 (PC1, PC2) because it 

is the one with the lowest assay value (i.e., 99.4% - Table 1). 
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A graphic representation of the principal components that allows you to immediately grasp their 

different compositions at a glance is that provided by the correlogram in Figure 8 below. 

 

 Figure 8 

 
 

 

The graph in Figure 8 is self-explanatory. From it, for example, it is confirmed that the second 

main component is practically determined by the assay variable alone, while the third 

component is determined by water content and color. 

For practical purposes, the score plots in figures 3, 4, 6 and 7 indicate that, in general, the quality 

of the product supplied by supplier 1 is the most constant and reproducible. This is followed by 

that of supplier 3, while that of supplier 2 is affected by high variability that could make it a 

source of problems. 

It is useless to say how useful such a discriminating characterization is. The univariate approach 

to the problem, namely the comparison of averages and dispersions of the individual variables 

in the three cases, does not allow the information to be viewed as well, which, using PCA, 

becomes intuitive even to non-experts. 
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Finally, it is important to consider that the approach illustrated here, in addition to the case of 

the same raw material supplied by multiple suppliers discussed here, can also be applied to 

other very common situations in the pharmaceutical industry such as, for example: 

▪ comparative evaluation of finished product lots, for example for the purposes of Annual 

 Product Quality Review (APQR) 

▪ comparative evaluation of series of measurements performed by different operators, etc.  

In all these cases, the information hidden in the folds of the numerous numerical variables that 

describe the analytical profile of a batch of finished product or in the measurements performed 

by different operators, is extracted and made immediately available in a ready-to-use format. 

The examination of the score plots of Figures 3,4, 6 and 7, if separated from the supplier’s 

groups to which they belong, returns an overall photograph of the arrangement of the raw 

material batches in the plan identified by two main components. 

The examination of the score plot in Figure 3, for example, shows in the plan identified by the 

two main components PC1 and PC2 (which, together, explain 86.7% of the variability in the 

data) the presence of four nuclei dense of points and one group only consisting of a single 

element (23) as illustrated in Figure 9 below. 

 

 Figure 9 
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The score plot in Figure 7, on the other hand, shows in the plan identified by PC1 and PC4 

(which, together, explain the 63.8 + 3.5 = 67.3% of the data variability) two main groups of 

points and two isolated points from the rest as illustrated in Figure 10 below. 

 

 Figure 10 

 
 

Therefore, depending on the perspective from which the data is looked at, a different number 

of homogeneous groups, or clusters, can be identified. In practice, these are "sub-populations" 

present within the "population" made up of all lots considered. 

To define the number of homogeneous groups on a non-individual basis, such as the visual one, 

multivariate methodologies are used that are particularly useful for the purpose and known, in 

general, as Cluster Analysis. This term means all those multivariate methodologies that solve 

the problem of classification, that is, the aggregation of statistical units to form groups (or 

clusters) of elements as homogeneous as possible and as isolated from each other as possible. 

Within these methodologies there are indices that allow you to establish with a good level of 

certainty the real number of homogeneous groups, or clusters, present. Furthermore, these 

methods contain indices, or statistics, such as Hopkin's that allow to establish a priori whether 

a certain dataset has the characteristics to be divided into clusters or not.  

In the case chosen here, for example, by applying the Cluster Analysis to the data and choosing 

K-means as grouping method (a so-called partitioning clustering method), the diagram shown 

in Figure 11 is obtained.  
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 Figure 11 

 
 

 

As can be seen, the diagram in Figure 11 highlights four main clusters and two separate 

datapoints: 23 completely isolated from everyone and 37 also however outside the closest 

homogeneous group. 

Each group is built around a centroid well indicated in the graph. 

A similar distribution (Figure 12) is also achieved using the so-called Hierarchical Clustering 

methods.  
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 Figure 12 

 
 

This second type of methods is based on the construction of hierarchical trees or dendrograms, 

such as the one represented in Figure 13. 

 

 Figure 13 
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From the above findings it emerges that, regardless of the technique used, in the dataset it can 

be identified four main clusters consisting of multiple datapoints and one consisting of a single 

datapoint (point 23) completely separated from all the others. Two datapoints (points 37 and 

15) occur in marginal positions.  

 

 

4. CONCLUSIONS 

 

Numerous factors contribute to the variability of the pharmaceutical industry processes and 

among these the raw materials play a primary role as they often come from different sources 

that use different production processes. 

The characterization of raw materials therefore plays a fundamental role in terms of Quality 

which, by its nature, is "the enemy of variability". 

Multivariate Statistical Analysis of Data (MVDA), beyond of its complex mathematical 

structure, is presented here as a powerful and practical tool for the study and classification of 

raw materials. In fact, thanks to the use of multivariate techniques such as Principal Component 

Analysis (PCA) or Cluster Analysis (CA), it is possible to graphically represent each lot, defined 

by the values of the different analytical parameters that characterize it, as a point in a Cartesian 

diagram whose coordinates are the principal components. Since these components are built to 

intercept the variability in the data, these graphs reveal characteristics which would escape other 

types of surveys and therefore allow to catalog the lots based on the degree of intrinsic 

homogeneity that defines them and identify any anomalous behavior. This approach can 

therefore be used both initially, to characterize the incoming raw materials, and subsequently, 

in the case of any anomalies, to see how the raw materials of the batches under investigation 

were located compared to those that had not given problems. 

The techniques that have been detailed here can also be extended to other typical situations in 

the pharmaceutical industry such as, for instance: 

▪ comparative evaluation of finished product lots, for example for the purposes of Annual 

 Product Quality Review (APQR), 

▪ comparative evaluation of series of measurements performed by different operators, etc. 

Once again, statistical methods show how it is possible to "simplify complexity" and extract 

practical and "ready-to-use" knowledge from data sets by capturing their information content.   
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